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Course Contents

Introduction to Random Variables (RVs)
Probability Distributions - One dimensional RVs

Higher Dimensional RVs — Joint Distribution; Conditional
Distribution; Independence

Properties of Random Variables

Parameter Estimation — Maximum Likelihood Method
and Method of Moments

Commonly Used Distributions in Hydrology
Hydrologic Data Generation

Introduction to Time Series Analysis

Purely stochastic Models; Markov Processes



Course Contents (contd)

* Analysis in the Frequency Domain : Spectral Density
« Auto Correlation and Partial Auto Correlation
* Auto Regressive Moving Average Models

— (Box-Jenkins models — model identification;
Parameter estimation ; calibration and validation ;
Simulation of hydrologic time series ; Applications to
Hydrologic Data Generation and Forecasting)
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Stochastic Hydrology - Applications
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Stochastic Hydrology - Applications

Rainfall
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Stochastic Hydrology - Applications

Real-time Flood Forecasting

To forecast water levels at
‘A’ , with sufficient lead
time

Water level at A: Function of
rainfall in the catchment upstream,
evaporation, infiltration, storage,
vegetation and other catchment
characteristics.
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Stochastic Hydrology - Applications

* Reliability of Meeting Future Demands

—How often does the system ‘Fail’ to
deliver?

* Resiliency of the System

—How quickly can the system recover
from failure”?

* Vulnerability of the system

— Effect of a failure (e.g., expected flood
damages; deficit hydropower etc.)



Stochastic Hydrology - Applications
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Stochastic Hydrology - Applications

Water Quality in Streams
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Stochastic Hydrology - Applications

= Flood frequency analysis
=— return period of critical events
= Probable Maximum Flood
= |ntensity-Duration-Frequency relationships,
= Run-lengths : intervals between rainy days

= Time series, data generation, flow
forecasting



Stochastic Hydrology - Applications 4,

Flow Q,

= Joint variation of flows in two or more streams
= Urban floods

- Estimates of design rainfall intensity based on
probability concepts

= Spatial variation in aquifer parameters
= Uncertainties introduced by climate change

- Likely changes in frequencies and magnitudes of
floods & droughts.

- Likely changes in stream flow, precipitation patterns,
recharge to ground water



Random Variable

Real-valued function defined on the sample space.

Y
l(s) Y Is a Random

Element ‘s’/in the Variable
ample space

Sample space of Possible real
an experiment values of Y

*Intuitively, a random variable (RV) is a
variable whose value cannot be known with
certainty, until the RV actually takes on a
value; In this sense, most hydrologic variables
are random variables



Random Variable

RVs of interest in hydrology

» Rainfall in a given duration

= Streamflow

= Soil hydraulic properties (e.g. permeability, porosity)

= Time between hydrologic events (e.g. floods of a
given magnitude)

= Evaporation/Evapotranspiration

= Ground water levels

= Re-aeration rates



Random Variable

Any function of a random variable is also a random
variable.

— For example, if X is ar.v,, then Z = g(X) is also r.v.

Capital letters will be used for denoting r.v.s and small
letters for the values they take

e.g. X —> rainfall, x = 30 mm
Y—> stream flow, y = 300 Cu.m.
We define ‘events’ on ther.v. e.g. X=30; a <Y <b

We associate probabilities to occurrence of events
— represented as P[X=30], P[a<Y<Db] etc.



Discrete & Continuous R.V.s

 Discrete R.V.: Set of values a random variable can
assume is finite (or countably infinite).

— No. of rainy days in a month (0,1,2....30)
— Time (no of years) between two flood events (1,2....)

« Continuous R.V.: If the set of values a random variable can
assume is infinite (the r.v. can take on values on a
continuous scale)

— Amount of rainfall occurring in a day
— Streamflow during a period

— Flood ‘peak over threshold’

— Temperature




Probability Distributions

Discrete random variables: Probability Mass Function
p(x)=0 ; Zp(x)=1

p(x) = P [X =x]

P(X;)




Probability Distributions

Cumulative distribution function : discrete RV

F(x) =Z p(x))
X; < X
1.0
P(X1)*+P(X,)
P(X4)




* P[X =x]=F(x)—F(x.4)
* The r.v., being discrete, cannot take values other
than x4, X5, X5.......... X,; P[X =x] =0 for x # x4,

« Some times, it is advantageous to treat
continuous r.v.s as discrete rvs.

— e.g., we may discretise streamflow at a
location into a finite no. of class intervals and
associate probabilities of the streamflow
belonging to a given class



Continuous R.V.s

pdf — Probability Density Function f(x)
cdf — Cumulative Distribution Function F(x)

Any function satisfying f(x)
f(x) > 0 and /

j:;f(x)=1 canbeapb/

a b x

pdf is NOT probability, but a probability density & therefore
pdf value can be more than 1




Continuous RVs

A

f(x)
P [x < X < x+dx]
_/ )
dx X
, P[x <X=sx+ dx] >
f(x)= lim where [ f(x)dx=1
x>0 dx J



Continuous RVs

PDF — Probability Density Function (Probability mass per
unit x)

f(x) P [x,<X<x,] =f J (x)dx

_/ /




Continuous RVs




f(x)

// Pla<X<b]

a b X

_

« P[a < X < Db]is probability that ‘x’ takes on a value
between ‘a’ and ‘b’
— equals area under the pdf between ‘a’ and ‘b’

= f f(x)dx —j' f(x)dx= f f(x)dx

* Pla<X<b]=F(b)-F(a)



(x)

Continuous RVs
F(0=PX <X [ f(x)dx

dF
(%) = d(x)
X
1 F(X)r /
Aip[xfxﬂ(—
X, X X,
PDF CDF



Cumulative Distribution Function

F (x)=PIX<x]= [ f(x)dx

A

f(x) Area under pdf = 1

1.0 T

Max. value= 1

F(x)|___/L— P[X<a] =/ /()
= Area under the pdf up to
£a7 )

a X




* For continuous RVs, probability of the RV taking a value
exactly equal to a specified value is zero

Thatis P[X=x]=0; X continuous

d
P[x=d]=P[nggd]=ff(x)dx=O
d

e P[x-AXx<X<x+Ax]#0
 Because P[X =a] =0 for continuous r.v.

Pla<X<b]=Pla<X<b]=Pla<X<b] = Pla<X<b]



f(x)

/ 1-P[X<a]
va

a I\ X

® Area indicates P[X>a]
P[X>a]= ff(x)dx

__

- [ F ([ £ (x)ds

1—-F(a)
1 - P[X<a]

P[x>a] = 1-P[x<a]



Mixed Distributions

« P[X=d]#0
 Afinite probability associated with a discrete event X = d
« At other values that ‘X’ can assume, there may be a
continuous distribution.
— e.g., probability distribution of rainfall during a day:
there is a finite probability associated with a day being
a non-rainy day, i.e., P [X=0], where x is rainfall during
a day; and for x#0, the r.v. has a continuous

distribution ;



Mixed Distributions

/3 [X=d]
f1(x) A

>

X=d <

f f(x)dx + P x = d]+} £,(x)dx =1.0



1.0

F(x) R
AF=P[X=d]

In this case, P [X<d]#P [X<d]



f Distribution of
(X) | rainfal during a day,

0 X
F(0) = P [X < 0] =P(X=0), in this case.



Example Problem

f(x)=a.x? 0<x<4
=0 otherwise

1. Determine the constant ‘a’

ff(x)dx=1

f a.x’dx=1

—00

_ -4
3
X
al|— =1

3
i 10
Gives a = 3/64 and f(x) = 3x4/64; 0<x<4




2. Determine F(x)

F(x) = [ f(x)dx =f J (x)dx

3
) 64
3 [x7]

64| 3

3

Fx—— O<x=<4
() 64

Then, for :
example, P[X < 3] = F(3) 24 21



PIX<4]=F@4)=1.0
P[1<X<3]=F@3)-F(1)=26/64
P [X>6] — From the definition of the pdf, this must be zero

P [X>6] = 1 - P[X < 6]

=]- } f(x)dx +} f(x)dx +j' f (x)dx-

=1-[ 0 + 10 + 0 ]
=0



Example problem

Consider the following pdf

1 -x/5

Derive the cdf

What is the probability that x lies between 3 and 5
Determine ‘x’ such that P[X <x] =0.5

Determine ‘x’ such that P[X > x] =0.75

s wnh =



. CDF:

F(x) = f f(x)dx= f f(x)dx
=}% e dx

_ [_e—x/s ]x
0

F(x)= [l—e_x/s]

. P[3<X<5]=F(5)-F(3)

0.63 -0.45
0.18



3. Determine ‘x’ such that P[X <x]=0.5
[1 —e_X/S] =0.5

-x/5=1In0.5
x=3.5

4. Determine ‘x’ such that P[X >x]=0.75
P[X = x] =1—P[sz]= 0.75
- [1 - e-x/S] =0.75

e =0.75
-x/5=1In0.75
x=1.44



