USE OF GEOSYNTHETICS FOR FILTRATION AND DRAINAGE

Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012

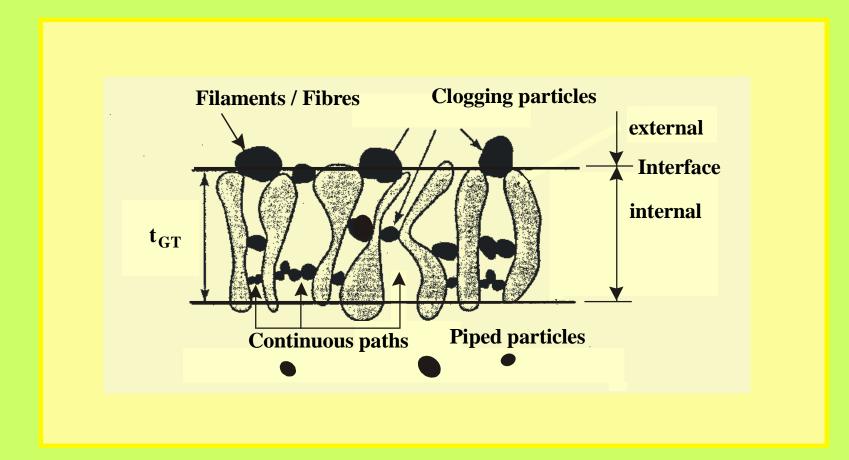
Functions of a Filter

- Retain particles of the base soil to be filtered Avoid piping
- Allow free flow of water
 - upstream of the filter
 Avoid external clogging
 (With unstable soils)
 - through the filter
 Avoid *internal* clogging
- Survive construction and environmental stresses
- Function can be provided by either natural aggregates or by Geotextiles

	AGGREGATES	GEOSYNTHETICS
SIMILARITIES		
- Risks of internal clogging b	y	
1. finer particles of the soils	s to be filtered	
2. aerobic bacterial activity		
3. deicing salt precipitation		
4. ice lens formation within DIFFERENCES	the frost penetration zone	
- Thickness	High (>150 mm)	Low (< 30 mm)
- Porosity	25 - 40 %	75 - 95 %
- Capillary rise h _c	Important ($h_c < 500 \text{ mm}$)	Low to none ($h_c < 50 \text{ mm}$)
- Tensile strength	None	Low to high
- Compressibility	Negligible	Medium to high
- Transmissivity under confining stress	Invariable	Variable
- Uniformity	Variable gradation as per borrow pit	Factory-controlled mass per unit area and thickness
- Durability	Completely inert	Altered by ultraviolet rays
- Installation	Must not be contamined by the surrounding soil.	Must be installed in intimate contact with the soil to be
	Compaction needed	filtered Installation eased by seaming of the joints
- Risk of damage	None	Subject to puncture and tearing

Filtration Behaviour

 Clogging: the voids of a medium are progressively filled by solid matter to the point that the passage of water is compromised

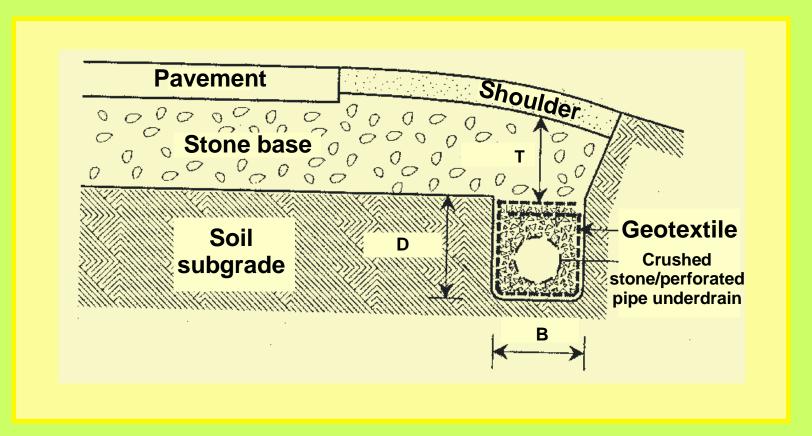

- Decrease in hydraulic conductivity

- Internal clogging
 - By mineral particles

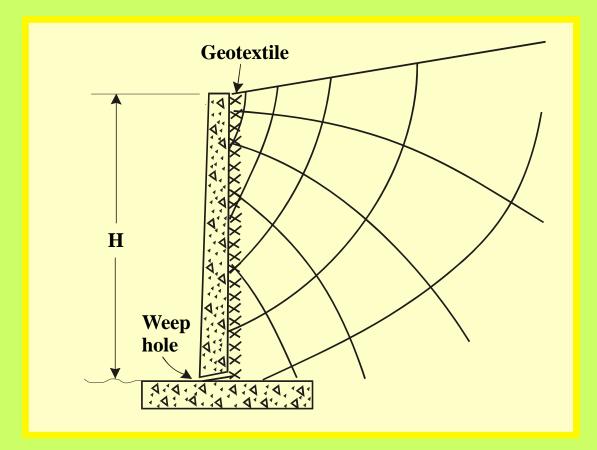
- By precipitation and chemical deposition in the voids by water containing iron, de-icing salts

- By biological growth encrustation in aerobic conditions

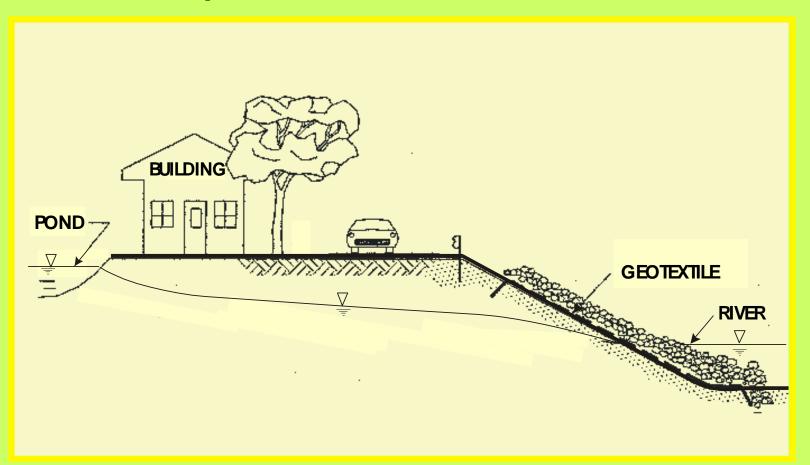
Base - Filter Interaction

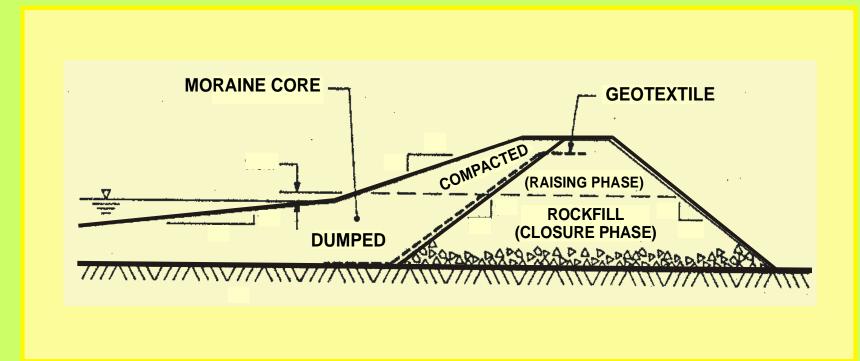

APPLICATIONS : DRAINAGE

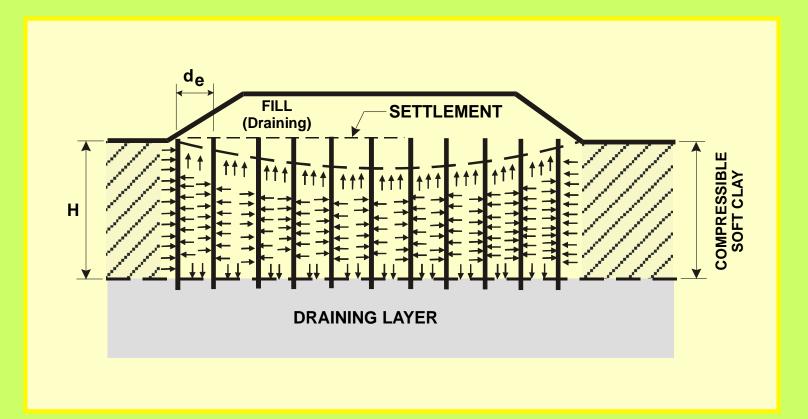
- Around trench drains and edge drains
- Beneath pavement bases and base courses
- Retaining walls and bridge abutments
- Drain and well pipes
- Slope stabilization
- Earth dams and Levees

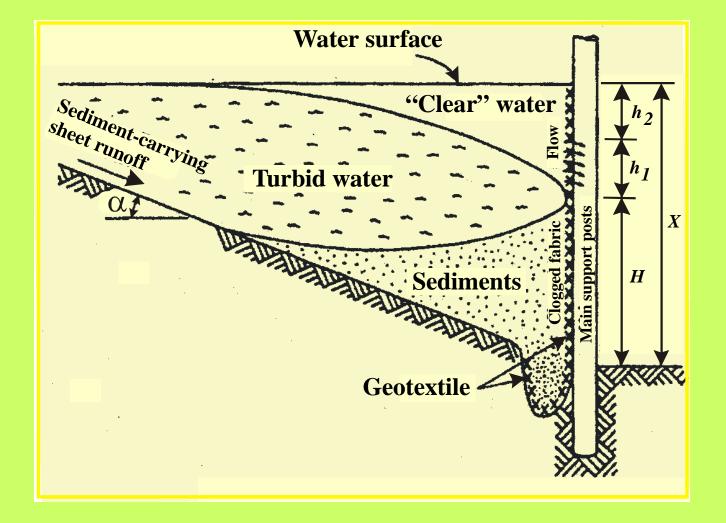

APPLICATIONS : EROSION CONTROL

- Protection of runoff collection
- Slope protection
- Along stream banks
- Scour protection around structures
- Construction facilities across/adjacent to water bodies
- Culverts, drop inlets, artificial stream channels


• Wrapping of trench drains (Koerner, 1998)


• Wall drains


Erosion protection



Earth and rockfill dams

Vertical consolidation drains

Filtration Flow Conditions

• Dynamic vs static

DYNAMIC, PULSATING, CYCLIC

- EROSION PROTECTION (WAVES, CURRENT)
- ROAD DRAINAGE (TRAFIC STRESSES)

CONDITIONS MORE SEVERE

REDUCE FILTER OPENING SIZE

STATIC, UNIDIRECTIONAL

- > WALL DRAINS
- > SILT FENCES
- VERTICAL CONSOLIDATION DRAINS
- EARTH & ROCKFILL DAMS

Table 1.Guidelines for evaluation of critical nature of severity for filtration, drainage and erosion control applications (Carroll, 1983)

A. Critical Nature of the Project

lter		Critical	Less Critical
1.	Risk of loss of life and/or structural damage due to drain failure:	High	None
2.	Repair costs versus installation costs of drain:	>>>	Equal or less
3.	Evidence of drain clogging before potential catastrophic failure:	None	Yes

Guidelines (Continued)

B. Severity of t	the Conditions	
Item	<u>Severe</u>	Less Severe
1. Soil to be drained:	Gap-graded, pipable, Or dispersible	Well-graded or uniform
2. Hydraulic gradient:	High	Low
3. Flow conditions:	Dynamic, cyclic, or pulsating	Steady state

Granular filter design criteria

a)Retention Criteria:

b)Permeability Criteria:

Geotextile filter requirements:

- Retention criteria
- Permeability criteria
- Anti-clogging criteria
- Serviceability criteria
- Durability criteria

Soil retention

A process in which the particle movement is resisted by granular forces

Useful design parameters

1. Coefficient of Uniformity, C_u

2. Linear Coefficient of Uniformity, C_u'

3. Coefficient of Curvature, C_c

Design Charts

Determination of soil retention requirements such as particle size distribution, Atterberg limits, dispersion potential, soil density conditions indicating the effect of confining stress, are all considered and design charts are prepared by Giroud (1988).

Typical hydraulic gradients (Giroud, 1988).

Drainage Application	Typical Hydraulic Gradient			
Standard Dewatering Trench	1.0			
Vertical Wall Drain	1.5			
Pavement Edge Drain	1			
Landfill LCDRS	1.5			
Landfill LCRS	1.5			
Landfill SWCRS	1.5			
Dams	10			
Inland Channel Protection	1			
Shoreline Protection	10			
Liquid Impoundment	10			

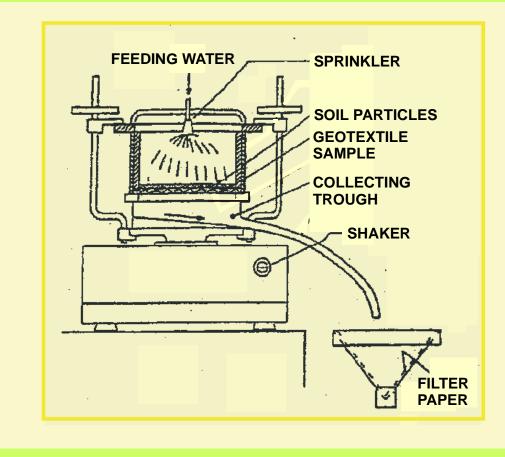
Typical relative densities (I_D) for granular soils

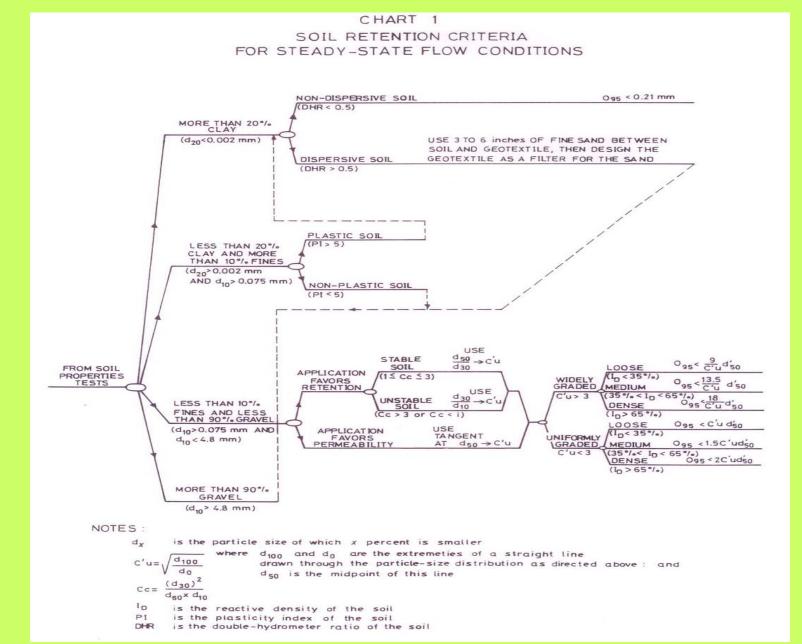
Soil Conditions	Low Confining Pressures (TYP ≤ 50 kPa)	High Confining Pressures (TYP > 50 kPa)
Unconsolidated	$I_D \leq 35\%$	35% < I _D < 5%
Sedimentary		
Deposits or		
Uncompacted		
Hydraulic Fill		
Consolidated	35% < I _D < 65%	I _D > 65%
Residual Deposits		
or Compacted Fill		

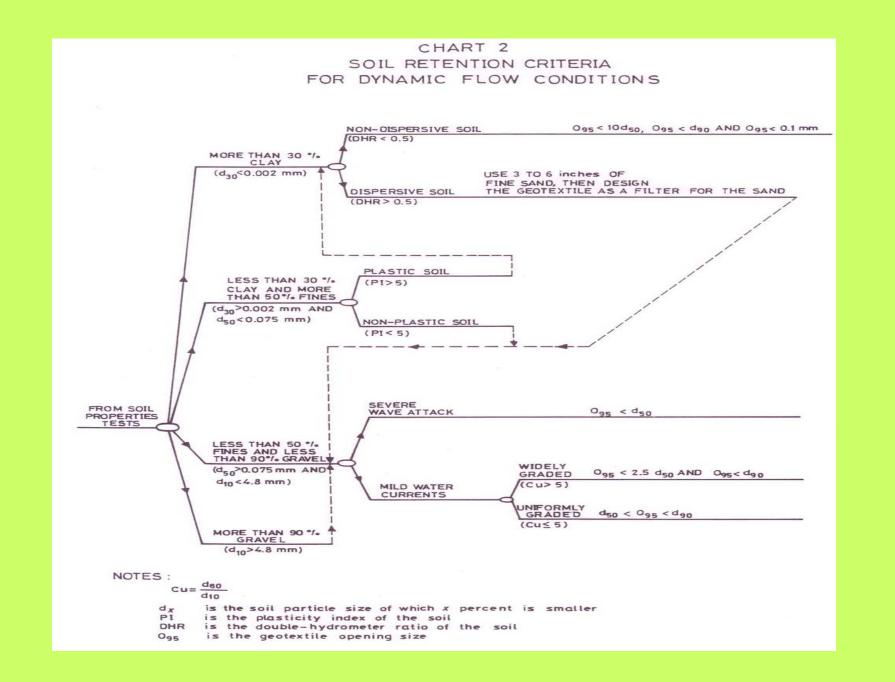
Retention Criteria:

 $O_{e(geotextile)} \leq B D_{(soil)}$

where:

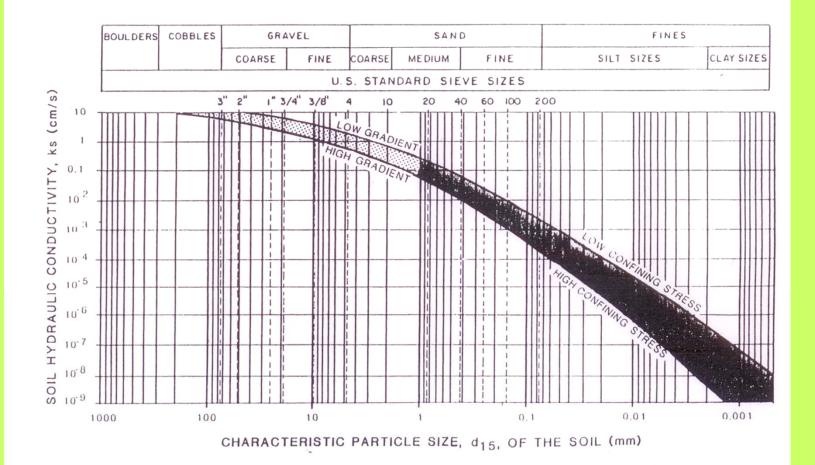

- O_e = effective opening size in the geotextile for which e is the present openings that are smaller than the opening size O (mm), usually the O₉₀ or O₉₅;
 B = a coefficient (dimensionless); and
- B = a coefficient (dimensionless); and $D_{(soil)} = representative soil particle size (mm),$


usually the medium to larger fractions or


D₈₅.

Laboratory Filter Characterization

• Opening size O₉₀ by wet sieving



Permeability criteria

Giroud Criteria $K_g > i_s K_s$ Where $i_s > 1.0$ FWHA Criteria $K_{geotextile} \ge FS \cdot k_{soil}$
 $\psi_{allow} \ge FS \cdot \psi_{required}$ For less critical conditions $K_{geotextile} \ge k_{soil}$ For Severe conditions $K_{geotextile} \ge 10 k_{soil}$ Min. permittivity conditions $\psi \ge 0.1$ to 1 sec⁻¹

FIGURE.

TYPICAL HYDRAULIC CONDUCTIVITY VALUES

Anti - Clogging Criteria

Use the largest available opening size satisfying the retention criteria

For nonwovens, porosity > 30%For woven geotextiles percent open area $\ge 4\%$

The porosity of a nonwoven geotextile is given by

 $n = (1-\mu/(t_g \rho)) * 100$

 μ is the mass per unit area of geotextile t_g is the geotextile thickness and ρ is the density of filament

Survivability Criteria

FIGURE 2

SURVIVABILITY STRENGTH REQUIREMENTS (a)

		GEOTEXTILE PROPERTY					
		GRAB STRENGTH (bs)	ELONGATION (%)	SEWN SEAM STRENGTH (Ibs)	PUNCTURE STRENGTH (Ibs.)	BURST STRENGTH (p.s.i)	TRAPE ZOID TEAR (Ibs)
MODERATE INSTALLATION CONDITIONS (TYPICAL DRAINAGE APPLICATIONS)	HIGH CONTACT STRESSES (ANGULAR DRAINAGE MEDIA) (HEAVY COMPACTATION) OR (HEAVY CONFINING STRESS)	180	N/A	160	80	290	50
	LOW CONTACT STRESSES (ROUNDED DRAINAGE MEDIA) (LIGHT COMPACTION) AND (LIGHT CONFINING STRESS)	80	N/A	70	25	130	25
SEVERE INSTALLATION CONDITIONS (SHORELINE PROTECTION AND ARMOURED SYSTEMS APPLICATIONS) (S	HIGH CONTACT STRESSES (DIRECT STONE PLACEMENT) (DROP HEIGHT > 3 It)	200	15	180	80	320	50
	LOW CONTACT STRESSES AND OR GEOTEXTILE CUSHION) (DROP HEIGHT < 3 It)	90	15	80	40	140	30

NOTE: (a) Alter FHWA, 1985.

(c) Test methods for determining geotextile properties given in Table 4-6 in "Geotextile Filter Design Manual"

Durability Criteria

- Aspects such as geotextiles resistance to ultraviolet and adverse chemical environments need be studied in specific application.
- Exposure to sunlight extensively during must be protected by anti-oxidants such a carbon black or titanium oxide.
- Geotextiles should also be resistant to chemicals.