NPTEL Course

GROUND IMPROVEMENT

Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Email: gls@civil.iisc.ernet.in

Module I

- Need for Ground Improvement
- Classification of ground modification techniques
- Emerging trends in ground Improvement

Recap:

Classification of Ground Improvement techniques Methods and techniques of Ground Improvement Factors affecting the selection of techniques

Need for Soil Improvement

Soft Clay

Liquefaction and sinkhole formation

Methods for Soil Improvement

Ground Reinforcement

Ground **Improvement**

Ground **Treatment**

- Stone Columns
- Soil Nails
- Micropiles
- Jet Grouting
- Ground Anchors
- Geosynthetics
- Fibers
- Lime Columns
- Vibro-Concrete Column
- Mechanically Stabilized Earth
- Biotechnical

- Surface Compaction
- Drainage/Surcharge Flyash
- Electro-osmosis
- Compaction grouting
- Blasting
- Dynamic Compaction

- Soil Cement
- Lime Admixtures
- Dewatering
- Heating/Freezing
- Vitrification

Benefits/Objectives of ground improvement techniques

- Increase of strength
- Reduce distortion under stress (Increases stress-strain modulus)
- Reduce compressibility (volume decreases due to a reduction in air voids or water content under loads)

Continued:

- Prevent detrimental physical or chemical changes due to environmental conditions (freezing / thawing, wetting / drying)
- Reduce susceptibility to liquefaction
- Reduce natural variability of borrow materials and foundation soils

Jet grouted soilcrete columns

Stone columns

Nailing and Reinforced soil

Geosynthetic products

Fibers and reinforced earth

Effect of fibers on strength response

Effect of fibers on compressibility

Effect of fibers on swell response

Effect of fibers on piping resistance

Trends Today

- Environmental Geotechnics and solid waste management using ground improvement techniques
- Containment and constructive use of waste materials
- Low-cost technologies with soil and additives
- Geosynthetics
- Biotechnical stabilization

Catalysts and accelerators

- Development of new machinery, particularly for deep compaction
- Availability of new construction materials such as geofoams, geocomposites
- Emergence of better guidelines for determining the suitability of specific techniques for certain types of soils and site conditions.
- Better understanding of the geotechnical processes involved and appreciation of the significance of the construction sequence.
- Refinement of methods of analysis and computer modeling techniques

Likely Trends Tomorrow

- Microbes to stabilize or remediate soils,
- Nanotechnology to modify the behavior of clay,
- Nano-sensors and MEMS to characterize and monitor the behavior of geomaterials and geosystems,
- Remote sensing and noninvasive ground-based sensing techniques, and
- Next-generation geologic data models to bridge sensing, computation, and real-time simulation of behavior for adaptive management purposes and geophysics for urban infrastructure detection.