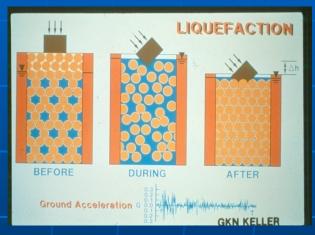
Lecture 2

NPTEL Course

GROUND IMPROVEMENT


Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Email: gls@civil.iisc.ernet.in

Module I

Need for Ground Improvement
Different types of problematic soils
Emerging trends in ground Improvement

Introduction

- Scarcity of suitable construction sites
- Problem soils
 - Collapsible soils
 - Liquefiable soils
 - Waste materials
 - Expansive and shrinkage
 - Marshy and soft soils
 - Karst deposits
- Wide application
- Economy

Classification of ground modification techniques

- Mechanical modification
- Hydraulic modification
- Physical and chemical modification
- Modification by inclusion and confinement
- Combination of the above

Methods for Soil Improvement

Ground Reinforcement Ground Improvement Ground Treatment

- Stone Columns
- Soil Nails
- Micropiles
- Jet Grouting
- Ground Anchors
- Geosynthetics
- Fibers
- Lime Columns
- Vibro-Concrete Column
- Mechanically Stabilized Earth
- Biotechnical

- Surface Compaction
- Drainage/Surcharge Flyash
- Electro-osmosis
- Compaction grouting
- Blasting
- Dynamic Compaction

- Soil Cement
- Lime Admixtures
- e Fiyash • Dewaterin
 - Dewatering
 - Heating/Freezing
 - Vitrification

Factors affecting the selection of ground improvement technique

 Type and degree of improvement required

 Bearing capacity improvement, settlement reduction, permeability enhancement/decrease, long term/short term, liquefaction resistance.

 Type of soil, geological structure, seepage conditions

 Type of clay/sand and foundation, role of pore pressure and seepage, presence of diffcult geological condition.

Costs, equipment, specifications

 Size of the project, availability of equipment, transportation costs, experienced contractors, Specification of work, guidance documents.

Construction time

 Construction time available, use of accelerated construction techniques

Possible damage to adjacent structure or pollution of ground water resources

Tolerable levels of loading and deformation, pore water contamination

Durability of the materials involved

Short term and long term, corrosion, aggressive soil condition.

Continued...:

- Toxicity and corrosivity of any chemical additives
- Government regulations may restrict the choice of additives
- Using Vitrification of soils to limit radio active or hazardous wastes,
- Ex: Remediation of chromium-contaminated soil through ex situ vitrification (ASCE journal paper)
- Reversibility or irreversibility of the process
- Ex: Lime added to expensive soil reacts in presence of sulphate

Reusability of components such as steel, plastics, concrete etc

- Reliability of methods of testing, analysis and design
- Good methods of testing, proven methods of design and analysis should be used and empirical approaches need to be avoided
- Feasibility of construction control and performance measurements
- Documents of quality control and performance are required in major ground improvement projects

Objectives of ground improvement techniques

- Increase strength
- Reduce distortion under stress (Increases stress-strain modulus)
- Reduce compressibility (volume decreases due to a reduction in air voids or water content under loads)
- Ex: Additives, fibers, reinforcement