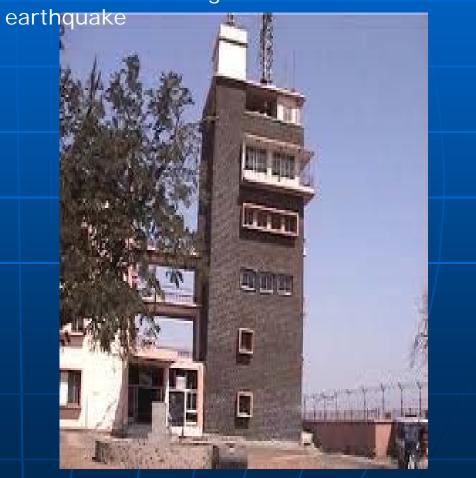
NPTEL COURSE

GROUND IMPROVEMENT

Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Email: gls@civil.iisc.ernet.in

Module I

Need for Ground Improvement
Different types of problematic soils
Emerging trends in ground Improvement

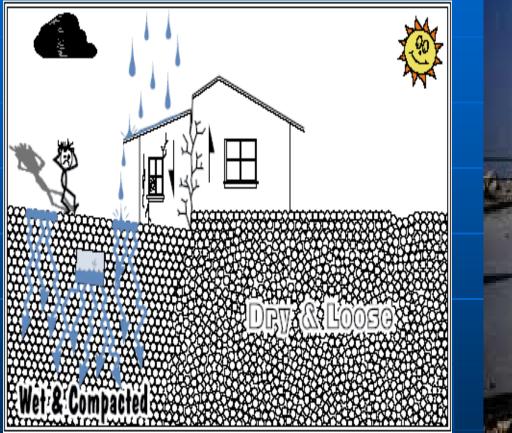

Need for engineered ground improvement CONCERNS

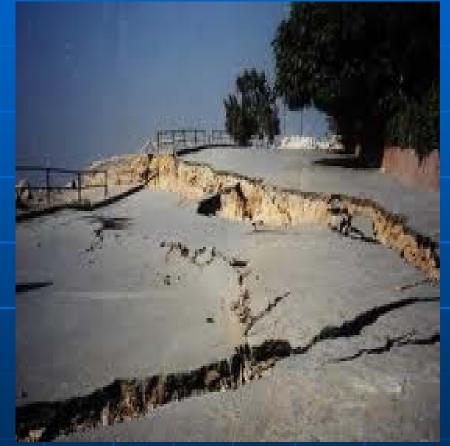
- Mechanical properties are not adequate
- Swelling and shrinkage
- Collapsible soils
- Soft soils
- Organic soils and peaty soils
- Sands and gravelly deposits, karst deposits with sinkhole formations
- Foundations on dumps and sanitary landfills
- Handling dredged materials
- Handling hazardous materials in contact with soils
- Use of old mine pits

Leaning tower of Pisa

Kandla Port Building after 2001

Effect of Swelling



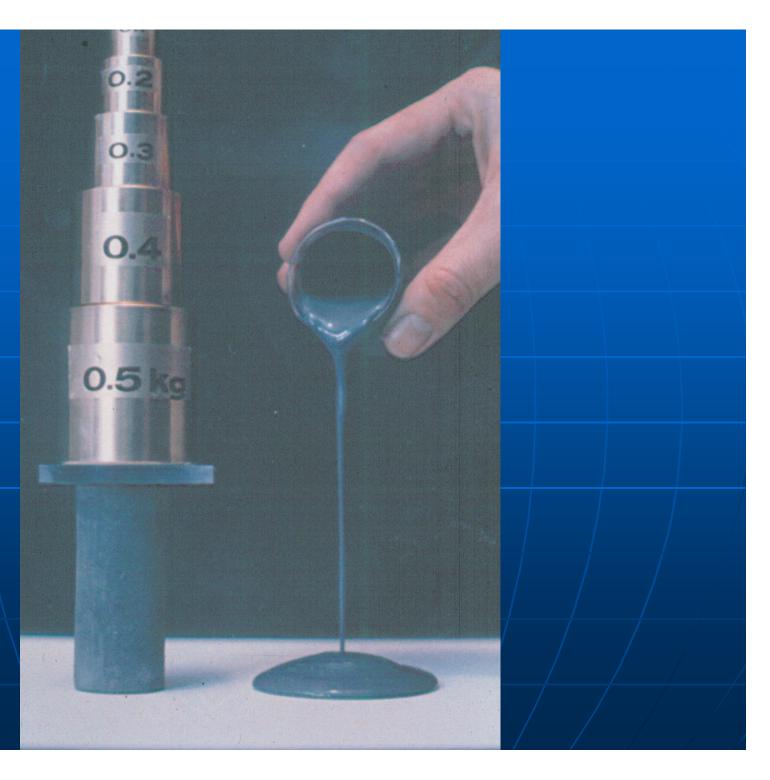

Effect of shrinkage

Swelling and shrinking soils exist in many areas in India, Large tracts of Maharashtra, Andhra, Deccan plateau, Chennai

Collapsible soils

Collapse occurs due to saturation, loss of cementation bonds, specific clay structure and areas in some areas in Rajasthan and in some counties abroad this is prevalent.

Failure of slope



Effects of liquefaction

Effect of Disturbance on a Quick Clay

Need for engineered ground improvement Strategies

When a project encounters difficult foundation conditions, possible alternative solutions are

- Avoid the particular site
- Design the planned structure (flexible/rigid) accordingly
- Remove and replace unsuitable soils
- Attempt to modify existing ground
- Enable cost effective foundation design
- Reduce the effects of contaminated soils
- Ensure sustainability in construction projects using ground improvement techniques

Ground Improvement Techniques for different soil types

- Ground improvement can be done through various mechanisms
- Compaction
- Dewatering
- Reinforcement
- Admixtures or grouting

Reinforcement

•This method improves the soil response by interaction between soil and inclusion.

- The improving period depends on the life of inclusion.
- In this technique there is no change in the state of soil.

•It is a widely used technique as it can be done for many types of soils.

Admixtures or Grouting

•Cementation plays a major role in improving the soil response.

- Short term/long term improvement techniques are possible.
- •There is a change in soil state after adopting it.

Compaction

•The state of soil is improved in this technique due to high densification.

•This is a long term improvement technique.

•There is a change in soil state after adopting it.

•This technique can be adopted for silty , sandy and gravely soils.

Dewatering

•This is a technique similar to compaction.

•It is mostly adopted to clayey soils.

SNo	Type of soil	Reinforcement	Admixtures	Compaction	Dewatering
1	Organic soil				
2	Volcanic clay soil				
3	Highly plastic clay				
4	Lowly plastic clay				
5	Silty soil				
6	Sandy soil				
7	Gravel soil				

Soils for which the technique is not applicable

Soils for which the technique is applicable

Classification of ground modification techniques

- Mechanical modification
- Hydraulic modification
- Physical and chemical modification
- Modification by inclusion and confinement
- Combination of the above