Polymer Chemistry - Video course

COURSE OUTLINE

- Introduction to macromolecules
- Polymerization processes
- Polymers in solution
- Characterization of macromolecules
- Reaction of macromolecules
- Polymer properties

COURSE DETAIL

COURSE DETAIL		
Lectures	Topic/s	Sub-Topics
1-3	Introduction	Definitions, origin, nomenclature, classification of macromolecules; molecular weight (MW) and its distribution; thermal transitions; thermodynamics of polymerization.
4-7	Step Polymerization	Reactivity of functional groups; kinetics; molecular weight in open and closed system - Carother's equation; stoichiometric control of MW; cyclization vs. linear polymerization, cross-linking and gel point; process condition; step-copolymerization, examples of step polymers.
8-13	Radical Chain Polymerization	Nature of chain polymerization and its comparison with step polymerization; radical vs. ionic polymerizations; structural arrangements of monomer units; kinetics of chain polymerization; molecular weight and its distribution; chain transfer, inhibition, retardation, auto-acceleration; energetic characteristics; techniques of radical polymerization — bulk, solution, emulsion, suspension polymerization; examples of polymers made by radical chain polymerization.
14	Living radical polymerization	Theory; nitroxide-mediated polymerization (NMP); atom transfer radical polymerization (ATRP); radical addition-fragmentation transfer (RAFT); others.
15-16	lonic chain polymerization	Comparison of radical and ionic polymerizations; cationic polymerizations - kinetics, mechanism; anionic polymerization - kinetics, mechanism; living anionic polymerization; examples.

NPTEL

http://nptel.iitm.ac.in

Chemistry and Biochemistry

Pre-requisites:

Introductory Physical, Organic and Inorganic Chemistry

Coordinators:

Dr. D. Dhara

Department of ChemistryIIT Kharagpur

17-18	Chain co- polymerization	General considerations; types of copolymers, copolymer compositions, reactivity ratio; radical and ionic copolymerizations; examples.
19-21	Stereoregular polymerization	Origin and types of stereoisomerism in polymers; factors influencing stereoregulation; properties of stereoregular polymers; stereospecific ionic polymerizations; coordination polymerization; Ziegler-Natta polymerization, metallocene polymerization; examples
22	Other polymerization processes	Ring opening polymerization; group transfer polymerization; metathesis polymerization, etc.
23-25	Polymers in solution	Thermodynamics of polymer solutions; Flory- Huggins theory, theta conditions; solubility parameters; fractionation of macromolecules
26-27	Chain dimensions	Freely joined chain; effect of geometric and volume restrictions; frictional properties of macromolecules in dilute solution.
28-33	Characterization of macromolecules	Determination of molecular weight - methods for measuring number average, weight average, viscosity average MW; gel permeation chromatography; spectroscopic techniques to determine chemical composition and molecular microstructure.
34-36	Reaction of macromolecules	Reactions with polyolefins, polyenes, pendant groups; polymer degradation - thermal degradation, degradation by catalyst residues, degradation by end groups; mechanism of stabilization - antioxidants and heat stabilizers, catalyst quenchers, end-capping;
37-38	Polymer properties and supermolecular structure	Properties of solid polymers, amorphous and crystalline phases of polymers, structure-property relationship.
39	Special topics/ Newer topics	Naturally occurring polymers, biodegradable, biosynthesis, polymers from bio/renewable resources.
40	Summary	

References:

- 1. Principles of Polymerization, 4th edn. George Odian, Wiley
- 2. Introduction to Polymers, 2nd edn. R. J. Young and P. A. Lovell, Nelson Thrones
- 3. Contemporary Polymer Chemistry, 3rd edn. H. R. Allcock, F. W. Lampe

and J. E. Mark, Pearson

- 4. Polymers: Chemistry and Physics of Modern Materials, J.M.G. Cowie, CRC Press
- 5. Introduction to Physical Polymer Science, L. H. Sperling, Wiley

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in