<u>Lecture – 20</u>

Controllability and Observability of Linear Time Invariant Systems

> **Dr. Radhakant Padhi** Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Evaluation of Matrix Exponential e^{At}

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Method – 1: Power-series

$$e^{At} = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$$

- This method is useful and accurate only if the series truncates naturally. Otherwise, series truncation introduces approximation error.
- Direct computation of e^{At} as power series is computationally inefficient as well.

Method – 2: Using Laplace Transform

$$e^{At} = L^{-1}\left[\left(sI - A\right)^{-1}\right]$$

- This method results in closed form expressions for e^{At}, can be quite useful for small matrices.
- Numerical algorithms exist to evaluate
 - $(sI A)^{-1}$. However, its inverse still need to be found.
 - Can be quite cumbersome for large matrices.

Method - 3: **Using Similarity Transform** (Provided the matrix can be diagonalizable) $e^{At} = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$ Similarity Transformation: $= PP^{-1} + PDP^{-1}t + \frac{(PDP^{-1})(PDP^{-1})t^{2}}{2t} + \cdots \qquad A = PDP^{-1}$ $= P \left(I + Dt + \frac{D^2 t^2}{2!} + \frac{D^3 t^3}{3!} + \cdots \right) P^{-1}$ $= P \begin{bmatrix} e^{\lambda_{1}t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_{n}t} \end{bmatrix} P^{-1}$

Method – 4: Sylvester's Formula Case – 1: Distinct Eigenvalues

e^{At} satisfies the following determinant equation:

$$\begin{vmatrix} 1 & \lambda_{1} & \lambda_{1}^{2} & \cdots & \lambda_{1}^{n-1} & e^{\lambda_{1}t} \\ 1 & \lambda_{2} & \lambda_{2}^{2} & \cdots & \lambda_{2}^{n-1} & e^{\lambda_{2}t} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots \\ 1 & \lambda_{n} & \lambda_{n}^{2} & \cdots & \lambda_{n}^{n-1} & e^{\lambda_{n}t} \\ I & A & A^{2} & \cdots & A^{n-1} & \underbrace{e^{\lambda_{1}t}}_{\text{Ultimate aim}} \end{vmatrix} = \mathbf{0}$$

$$e^{At} = \alpha_0(t)I + \alpha_1(t)A + \alpha_2(t)A^2 + \dots + \alpha_{n-1}(t)A^{n-1}$$

i.e.

Method – 4: Sylvester's Formula Case – 1: Distinct Eigenvalues

The coefficients $\alpha_0(t), \alpha_1(t), \dots, \alpha_{n-1}(t)$ can be determined from the following set of equations:

$$\alpha_{0}(t) + \alpha_{1}(t)\lambda_{1} + \alpha_{2}(t)\lambda_{1}^{2} + \dots + \alpha_{n-1}(t)\lambda_{1}^{n-1} = e^{\lambda_{1}t}$$

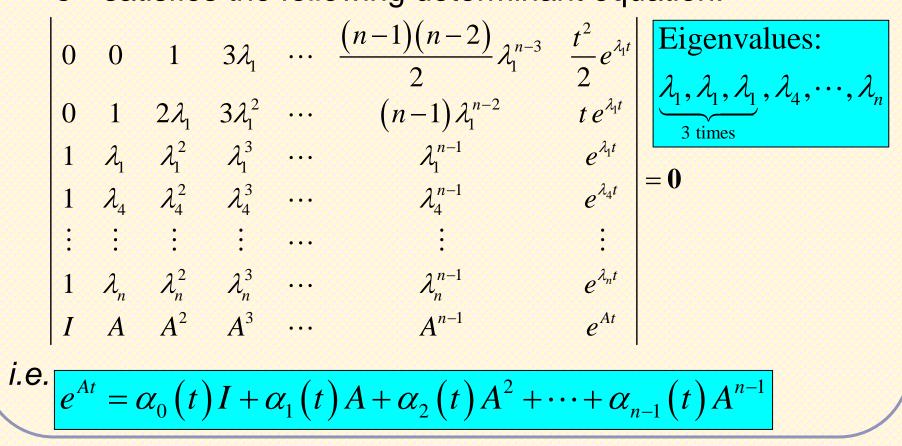
$$\alpha_{0}(t) + \alpha_{1}(t)\lambda_{2} + \alpha_{2}(t)\lambda_{2}^{2} + \dots + \alpha_{n-1}(t)\lambda_{2}^{n-1} = e^{\lambda_{2}t}$$

$$\vdots$$

$$\alpha_0(t) + \alpha_1(t)\lambda_n + \alpha_2(t)\lambda_n^2 + \dots + \alpha_{n-1}(t)\lambda_n^{n-1} = e^{\lambda_n t}$$

Method – 4: Sylvester's Formula Case – 2: Repeated Eigenvalues

e^{*At*} satisfies the following determinant equation:



Method – 4: Sylvester's Formula Case – 2: Repeated Eigenvalues

The coefficients $\alpha_0(t), \alpha_1(t), \dots, \alpha_{n-1}(t)$ can be determined from:

$$\begin{aligned} \alpha_{2}(t) + 3\alpha_{3}(t)\lambda_{1} + \dots + \frac{(n-1)(n-2)}{2}\alpha_{n-1}(t)\lambda_{1}^{n-3} &= \frac{t^{2}}{2}e^{\lambda_{1}t} \\ \alpha_{1}(t) + 2\alpha_{2}(t)\lambda_{1} + 3\alpha_{3}(t)\lambda_{1}^{2} + \dots + (n-1)\alpha_{n-1}(t)\lambda_{1}^{n-2} &= te^{\lambda_{1}t} \\ \alpha_{0}(t) + \alpha_{1}(t)\lambda_{1} + \alpha_{2}(t)\lambda_{1}^{2} + \dots + \alpha_{n-1}(t)\lambda_{1}^{n-1} &= e^{\lambda_{1}t} \\ \alpha_{0}(t) + \alpha_{1}(t)\lambda_{4} + \alpha_{2}(t)\lambda_{4}^{2} + \dots + \alpha_{n-1}(t)\lambda_{4}^{n-1} &= e^{\lambda_{4}t} \\ \vdots \\ \alpha_{0}(t) + \alpha_{1}(t)\lambda_{n} + \alpha_{2}(t)\lambda_{n}^{2} + \dots + \alpha_{n-1}(t)\lambda_{n}^{n-1} &= e^{\lambda_{1}t} \end{aligned}$$

Method – 4: Sylvester's Formula Example

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}, \qquad \lambda_{1,2} = 0, -2$$

To compute e^{At} using Sylvester's formula, we have

$$\begin{vmatrix} 1 & \lambda_{1} & e^{\lambda_{1}t} \\ 1 & \lambda_{2} & e^{\lambda_{2}t} \\ I & A & e^{At} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 1 & -2 & e^{-2t} \\ I & A & e^{At} \end{vmatrix} = \mathbf{0}$$

Expanding the determinant

$$-2e^{At} + A + 2I - Ae^{-2t} = 0$$
$$e^{At} = \frac{1}{2} \left(A + 2I - Ae^{-2t} \right) = \begin{bmatrix} 1 & \frac{1}{2} \left(1 - e^{-2t} \right) \\ 0 & e^{-2t} \end{bmatrix}$$

Controllability of Linear Time Invariant Systems

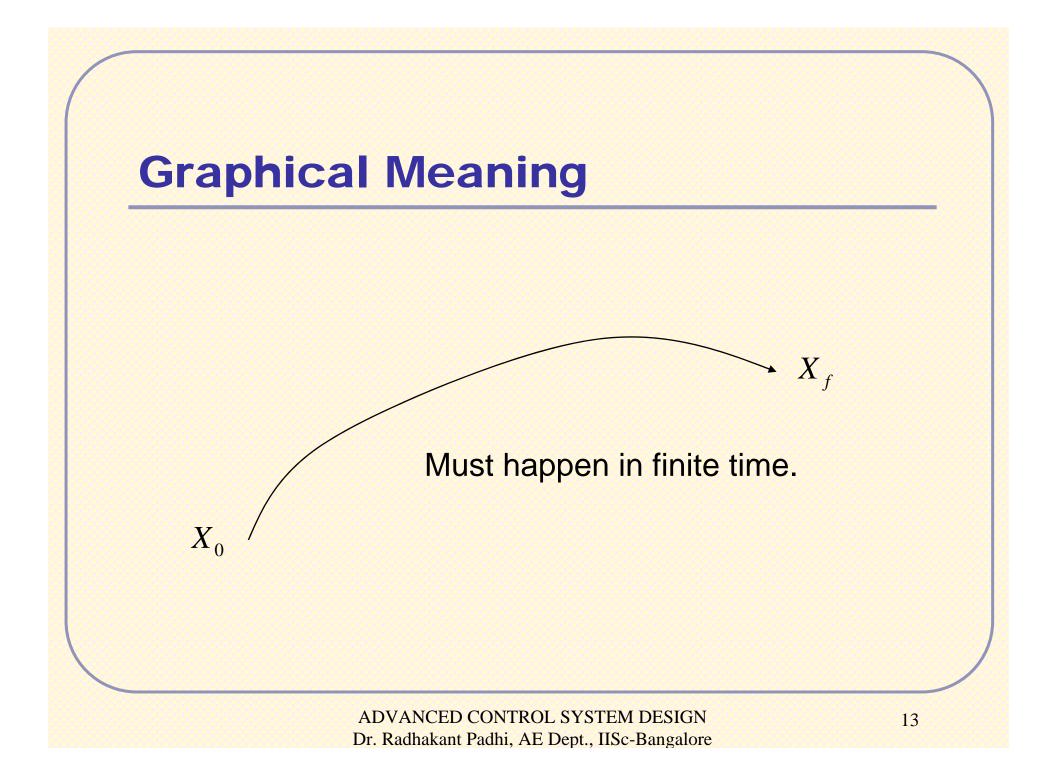
Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Controllability

A system is said to be *controllable* at time t₀ if it is possible by means of an *unconstrained control vector* to transfer the system from any initial state x₀ to any other state *in a finite interval of time*

Controllability depends upon the system matrix

A and the control influence matrix B



Condition for Controllability: (single input case)

System: $\dot{X} = AX + Bu$

Solution: $X(t) = e^{At}X(0) + \int_{0}^{t} e^{A(t-\tau)}Bu(\tau) d\tau$

Assuming
$$X(t_1) = 0$$
,
 $0 = e^{At_1} X(0) + \int_0^{t_1} e^{A(t_1 - \tau)} B u(\tau) d\tau$
 $X(0) = -\int_0^{t_1} e^{-A\tau} B u(\tau) d\tau$

Condition for Controllability: (single input case)

 $e^{-A\tau} = \sum_{k=1}^{n-1} \alpha_{k}(\tau) A^{k}$ (Sylvester's formula) $X(0) = -\int_{0}^{t_{1}} e^{-A\tau} Bu(\tau) d\tau = -\sum_{k=0}^{n-1} A^{k} B \int_{0}^{t_{1}} \alpha_{k}(\tau) u(\tau) d\tau$ $= -\sum_{k=0}^{n-1} A^k B \beta_k \qquad \text{where} \quad \beta_k \triangleq \int_0^{t_1} \alpha_k(\tau) u(\tau) d\tau$ $= -\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_{n-1} \end{bmatrix}^T$ This system should have a non-trivial solution for $\begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_{n-1} \end{bmatrix}^n$

Controllability

<u>Result</u>: If the rank of $C_B \triangleq \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ is *n*,

then the system is controllable.

Example:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u$$

$$C_B = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 1 & -2 \end{bmatrix}$$

 $rank(C_B) = 2$... The system is controllable.

Output Controllability

Result:	$\dot{X} = AX + BU$

Y = CX + DU

 $X \in \mathbb{R}^n$, $U \in \mathbb{R}^m$, $Y \in \mathbb{R}^p$ If the rank of $C_B \triangleq \begin{bmatrix} CB & CAB & \cdots & CA^{n-1}B & D \end{bmatrix}$ is p, then the system is output controllable. Note: The presence of DU term in the output equation

always helps to establish output controllability.

Observability of Linear Time Invariant Systems

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Observability

• A system is said to be *observable* at time t_0 if, with the system in state $X(t_0)$, it is possible to determine this state from the observation of the output over a finite interval of time

Observability depends upon the system matrix A and the output matrix C

Observability
Result: If the rank of
$$O_B \triangleq \begin{bmatrix} C^T & A^T C^T & \cdots & (A^T)^{n-1} C^T \end{bmatrix}$$
 is *n*, then the system is observable.
Example:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$O_B = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$rank(O_B) = 1 \neq 2 \quad \therefore \text{ The system is NOT observable.}$$

Controllability and Observability in Transfer Function Domain

- The system is both controllable and observable if there is no Pole-Zero cancellation.
- Note: The cancelled pole-zero pair suppresses part of the information about the system

Principle of Duality

System **S**₁: $\dot{X} = AX + BU$ $C_B = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$ $Y_1 = CX$ $O_B = \begin{bmatrix} C^T & A^TC^T & A^{T^2}C^T & \cdots & A^{T^{n-1}}C^T \end{bmatrix}$

System S₂: $\dot{Z} = A^T Z + C^T V$ $C_B = \begin{bmatrix} C^T & A^T C^T & A^{T^2} C^T & \cdots & A^{T^{n-1}} C^T \end{bmatrix}$ $Y_2 = B^T Z$ $O_B = \begin{bmatrix} B & AB & A^2 B & \cdots & A^{n-1}B \end{bmatrix}$

The principle of duality states that the system S_1 is controllable if and only if system S_2 is observable; and vice-versa!

Hence, the problem of observer design for a system is actually a problem of control design for its dual system.

Stabilizability and Detectability

- Stabilizable system: Uncontrollable system in which uncontrollable part is stable
- Detectable system: Unobservable system in which the unobservable subsystem is stable

Ref: B. Friedland, Control System Design, McGraw Hill, 1986

System Dynamics

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \\ \dot{x}_{4} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 & 1 \\ -2 & -3 & 0 & 0 \\ -2 & -2 & -4 & 0 \\ -2 & -2 & -4 & 0 \\ -2 & -2 & -2 & -5 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \\ 2 \\ x_{3} \\ x_{4} \end{bmatrix} u$$

Output Equation

$$y = \begin{bmatrix} 7 & 6 & 4 & 2 \end{bmatrix} X$$

Ref: B. Friedland, Control System Design, McGraw Hill, 1986

Transfer Function:

$$\frac{y(s)}{u(s)} = C(sI - A)^{-1} B = \frac{(s+2)(s+3)(s+4)}{(s+1)(s+2)(s+3)(s+4)} = \frac{1}{(s+1)}$$

pole-zero cancellation

Implication: What appears to be a fourth-order system, is actually a first-order system! Hence, there is either loss of controllability or observability (or both).

Question: Is this system stabilizable?

Ref: B. Friedland, Control System Design, McGraw Hill, 1986

Define $\overline{X} = TX$. Then $\dot{\overline{X}} = T\dot{\overline{X}} = T(AX + Bu)$ $\dot{\overline{X}} = (TAT^{-1})\overline{\overline{X}} + (TB)u$ Let

$$T = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \implies TAT^{-1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}, TB = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

• 7

Ref: B. Friedland, Control System Design, McGraw Hill, 1986

$$\begin{vmatrix} \overline{x}_1 \\ \dot{\overline{x}}_2 \\ \dot{\overline{x}}_3 \\ \dot{\overline{x}}_4 \end{vmatrix} = \begin{vmatrix} -\overline{x}_1 + u \\ -2\overline{x}_2 \\ -3\overline{x}_2 \\ -3\overline{x}_3 + u \\ -4\overline{x}_4 \end{vmatrix}, \quad y = CX = CT^{-1}\overline{X} = \overline{x}_1 + \overline{x}_2$$

Implications:

- \overline{x}_1 : Affected by the input; visible in the output
- \overline{x}_2 : Unaffected by the input; visible in the output
- \overline{x}_3 : Affected by the input; Invisible in the output
- \overline{x}_4 : Unaffected by the input; Invisible in the output

Block Diagram:

Where do uncontrollable or unobservable systems arise?

Redundant state variables

Physically uncontrollable system

Too much symmetry

References

 K. Ogata: Modern Control Engineering, 3rd Ed., Prentice Hall, 1999.

 B. Friedland: Control System Design, McGraw Hill, 1986.

