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Solution of Linear Differential 
Equations

Linear systems:
Systems that obey the “Principle of 
superposition”.

Uniqueness Theorem:
There is only one solution for linear systems.
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Solution of Homogeneous Linear 
Differential Equation: Scalar case
System dynamics:
Solution:

Initial condition:

Hence, 
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Note:
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Solution of Homogeneous Linear 
Differential Equation: Scalar case
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Solution of Homogeneous Linear 
Differential Equations
System dynamics:

Guess solution:

Verify (substitute the guess into the differential equation)
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Solution of Homogeneous Linear 
Differential Equations
A Result:

i.e.
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Therefore  ( ) is 'a' solution.
Hence,   ( ) is 'the' solution.
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Solution of Homogeneous Linear 
Differential Equations

Applying the initial condition

Another result:
(easy to show from definition)

Taking

Thus

Finally    
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Non-homogeneous system:

Solution contains two parts:
• Homogeneous solution
• Particular solution 

Homogeneous solution:  

Particular solution:  
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Solution of Non-homogeneous 
Linear Differential Equations



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

9

1

1

( )

( ) ( ) ( )

( )

t
At At A

p
t

t
A t

t

X t e C t e e BU d

e BU d

τ

τ

τ τ

τ τ

−

−

= =

=

∫

∫

Solution of Non-homogeneous 
Linear Differential Equations
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Complete solution:

Initial condition:
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Solution of Non-homogeneous 
Linear Differential Equations
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Complete solution:

The integral term in the forced system solution is 
a convolution integral.

Note: If is in feedback form
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Solution of Non-homogeneous 
Linear Differential Equations
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Solution of Non-homogeneous 
Linear Differential Equations:
Some Comments

0

0

The solution results do not demand that .
They are equally valid even if .

t t
t t

≥
≤

The integral term in the forced system solution is a "convolution integral".
i.e. The contribution of input ( ) is the convolution of ( ) with .
Hence, the function  has the role of "impulse r

At

At

U t U t e B
e B esponse" of the system

whose output is ( ) and input is ( ).X t U t

The solution for output ( ) is also readily available from  ( ) and ( ) :
( ) ( ) ( )

Y t X t U t
Y t CX t DU t= +
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Example: Motion of a car 
without friction
The equation of motion is
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Example: Motion of a car 
without friction
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Example: Motion of a car 
without friction
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Evaluation of      :
A Useful Result

Ate
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Solution using Laplace transform:

Solution known:
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Comparing the two solutions:
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Evaluation of      :
How to compute it symbolically?

Ate
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Symbolic computation of
Ate
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Equate the coefficients on both sides…
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Symbolic computation of
Ate
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This suggests a recursive algorithm!
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Reference: T. Kailath, Linear Systems, Prentice-Hall, 1980.
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Solution of Linear Time Varying 
Systems
Homogeneous Linear System
Solution:

PROPERTIES OF STM

1. It satisfies linear differential equation

2.

3. For any three time instants
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Properties of STM
4. 

1)],([),( −= τϕτϕ tt
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1 tt
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5. For time-invariant systems

6. For linear time invariant system
( )( , ) A tt e τϕ τ −=
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Solution: 
How to determine 
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(Method of variation of parameters)

Solution of Linear Time Varying 
Systems
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Solution of Linear Time Varying 
Systems
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