<u>Lecture – 2</u> First and Second Order Linear Differential Equations

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Linear Differential Equations

Principle of superposition:

If $x_1(t)$ and $x_2(t)$ are solutions then $\alpha_1 x_1(t) + \alpha_2 x_2(t)$ is also a solution for any scalars α_1 and α_2

Example:

 $\ddot{x} + x = 1$ (Non homogeneous)

 $x_1 = 1 + \cos t$ and $x_2 = 1 + \sin t$ both are solutions.

But

 $2(1 + \cos t)$ or $[(1 + \cos t) + (1 + \sin t)]$ are not solutions.

Linear Differential Equations

However, if

 $\ddot{x} + \dot{x} = 0$ (Homogeneous) then both of the above are solutions.

<u>Lesson:</u> Principle of superposition holds good only for homogeneous linear differential equations.

Homogeneous First-order Equations

System dynamics: $\dot{x} + kx = 0$, $x(t_0) = x_0$, $k = 1/\tau$ (dx/x) = -k dtSolution: $\ln x = -kt + \ln c$ $\ln(x/c) = -kt$ $x = e^{-kt}c$ $x_0 = e^{-kt_0}c, \quad c = e^{kt_0}x_0$ Initial condition: $x(t) = e^{-k(t-t_0)} x_0$ Hence,

Homogeneous First-order Equations

Note:

1)
$$e^{at} = 1 + at + \frac{a^2t^2}{2!} + \frac{a^3t^3}{3!} + \cdots$$

2) If
$$t_0 = 0$$
, then the solution is x_0
 $x(t) = e^{-kt}x_0 = e^{-(t/\tau)}x_0$

$$0.63x_0$$
(no overshoot)

Non-homogeneous First-order Equations: Response to Step Inputs

Consider: $\dot{x} + \frac{1}{-}x = A$ (A: constant) Homogeneous solution: $\dot{x}_h + \frac{1}{\tau} x_h = 0$ $x_{h} = e^{-\frac{t}{\tau}}c$ Particular solution: $x_p = B$ Substitute: $\frac{1}{-B} = A$ $\therefore x_p = B = \tau A$

Non-homogeneous First-order Equations: Response to Step Inputs

$$x(t) = x_{h} + x_{p}$$

$$x(t) = e^{-\frac{t}{\tau}}c + \tau A$$

$$x_{0} = c + \tau A \implies c = x_{0} - \tau A$$

$$x(t) = e^{-\frac{t}{\tau}}(x_{0} - \tau A) + \tau A$$

$$x_{ss} = \lim_{t \to \infty} x(t) = \tau A \quad (\text{Note: } x_{ss} \neq A)$$

$$\text{Complete solution: } x(t) = e^{-\frac{t}{\tau}}(x_{0} - \tau A) + \tau A$$

$$\text{Steady state error } (wrt. \text{ input } A):$$

$$e_{ss} = A - [x(t)]_{t \to \infty} = A - \tau A = (1 - \tau)A$$

First-order Equations in Special Form: Unit Step Response

Consider: $\dot{x} + \left(\frac{1}{\tau}\right)x = \left(\frac{1}{\tau}\right)A$

(Special case in text books:
$$A = 1$$
)

Homogeneous:

$$\dot{x}_h + \frac{1}{\tau} x_h = 0$$
$$x_h = e^{-\frac{t}{\tau}} c$$

Particular solution:
$$x_p = B$$

Substitute: $\left(\frac{1}{\tau}B = \frac{1}{\tau}A\right) \implies (B = A)$
 $\therefore x_p = B = A$

First-order Equations in Special Form: Unit Step Response

$$x(t) = x_h + x_p$$

$$x(t) = e^{-\frac{t}{\tau}}c + A$$

$$x_0 = c + A \implies c = x_0 - A$$

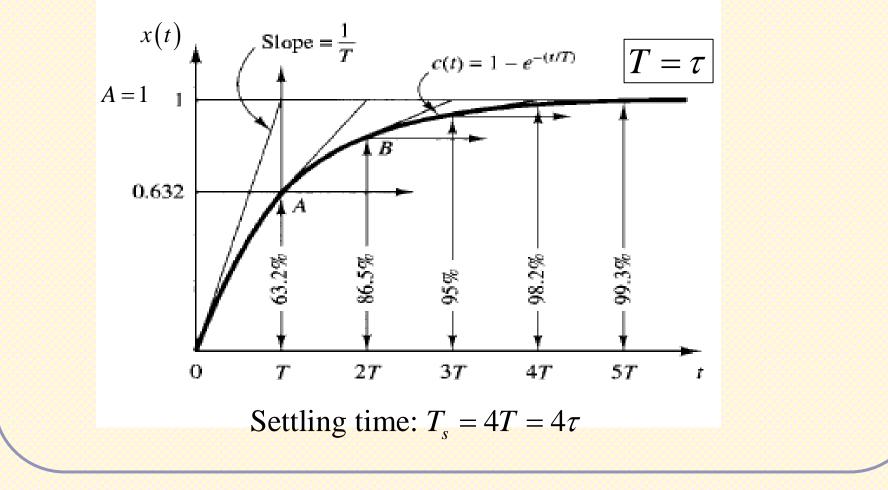
$$x(t) = e^{-\frac{t}{\tau}}(x_0 - A) + A$$

$$x_{ss} = \lim_{t \to \infty} x(t) = A$$

Complete solution: $x(t) = e^{-\frac{t}{\tau}} (x_0 - A) + A$

Steady state error (*wrt*. input *A*): $e_{ss} = A - x_{ss} = A - A = 0$

Unit Step Response of a First-Order System



Second Order System

Homogeneous:

 $\ddot{x} + a\dot{x} + bx = 0, \quad (a = 2\xi\omega_n, b = \omega_n^2)$ Guess: $x(t) = e^{\lambda t}$ $(\lambda^2 + a\lambda + b)e^{\lambda t} = 0$ $e^{\lambda t} \neq 0$ $\Rightarrow \lambda^2 + a\lambda + b = 0 \quad : \text{characteristic equation}$ $\lambda_{1,2} = \frac{-a \pm \sqrt{a^2 - 4b}}{2}$

Second Order System

Note: $a, b \in \mathbb{R}$

 \Rightarrow Arises three cases

Case 1: Distinct and real roots

Case 2: Complex conjugate roots

Case 3: Real and repeated roots

Case-1: Distinct and real roots

$$x_{1} = e^{\lambda_{1}t}, \qquad x_{2} = e^{\lambda_{2}t}$$
$$x(t) = c_{1}x_{1}(t) + c_{2}x_{2}(t)$$

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

Case-2: Complex conjugate roots

$$\lambda_{1} = \sigma + j\omega, \qquad \lambda_{2} = \sigma - j\omega$$

$$x_{1} = e^{(\sigma + j\omega)t} = e^{\sigma t} (\cos \omega t + j \sin \omega t)$$

$$x_{2} = e^{(\sigma - j\omega)t} = e^{\sigma t} (\cos \omega t - j \sin \omega t)$$

$$x(t) = c_{1}e^{(\sigma + j\omega)t} + c_{2}e^{(\sigma - j\omega)t}$$

However notice that:

Linearly
independent
terms
$$\frac{x_1 + x_2}{2} = e^{\sigma t} \cos \omega t$$

$$\frac{x_1 - x_2}{2 j} = e^{\sigma t} \sin \omega t$$

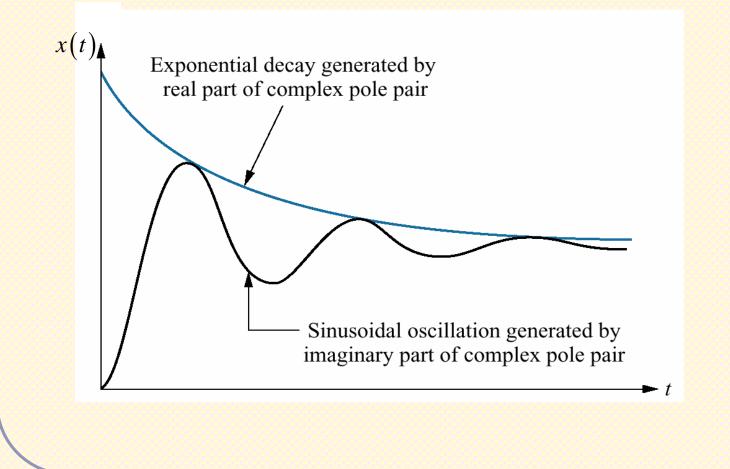
Case-2: Complex conjugate roots

So, we can also write the solution as :

$$x(t) = A\left(\frac{x_1 + x_2}{2}\right) + B\left(\frac{x_1 - x_2}{2j}\right)$$

$$x(t) = e^{\sigma t} \left(A \cos \omega t + B \sin \omega t \right)$$

Complex conjugate roots: Typical response plot



Case-3: Real and repeated roots

 $\lambda_1 = \lambda_2 = \lambda$ $x_1(t) = e^{\lambda t}$

How to find $x_2(t)$

Method of variation of parameters

Assume: $x_2(t) = u(t) x_1(t)$

Then

$$\dot{x}_{2} = u \, \dot{x}_{1} + \dot{u} \, x_{1}$$
$$\ddot{x}_{2} = u \, \ddot{x}_{1} + \dot{u} \, \dot{x}_{1} + \dot{u} \, \dot{x}_{1} + \ddot{u} \, x_{1}$$

Case-3: Real and repeated roots

Substituting back and rearranging the terms, it leads to

$$u(\ddot{x}_{1} + a \dot{x}_{1} + b) + \dot{u}(2\dot{x}_{1} + a x_{1}) + \ddot{u} x_{1} = 0$$

However, $(\ddot{x}_1 + a \, \dot{x}_1 + b) = 0$ (since x_1 is a solution) Moreover, $\dot{x}_1 = \lambda e^{\lambda t} = \lambda \dot{x}_1 = -\left(\frac{a}{2}\right)x_1$ (since $\lambda = -\frac{a}{2}$) $(2\dot{x}_1 + a \, x_1) = 0$

This leads to $\ddot{u} x_1 = 0$. Moreover $x_1 = e^{\lambda t} \neq 0$. Hence $\ddot{u} = 0$

Case-3: Real and repeated roots

One solution u(t) = t $\therefore x_2(t) = t x_1(t) = te^{\lambda t}$ $x(t) = c_1 x_1(t) + c_2 x_2(t)$ $\overline{x(t) = (c_1 + c_2 t) e^{\lambda t}}$

Corollary: When $\lambda = 0$ (double poles at origin)

$$x(t) = c_1 + c_2 t \rightarrow \infty$$
 as $t \rightarrow \infty$

Double pole (in general, multiple poles) at origin is de-stabilizing..!

Summary

Case	Roots of characteristic equation	Basics	General Solution
1	Distinct & Real λ_1, λ_2	$e^{\lambda_1 t}, e^{\lambda_2 t}$	$c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$
2	Complex Conjugate $\lambda = \sigma + j\omega$	$e^{\sigma t} \cos \omega t$ $e^{\sigma t} \sin \omega t$	$e^{\sigma t}(A\cos\omega t + B\sin\omega t)$
3	Real double Roots	$e^{\lambda t}, te^{\lambda t}$	$(c_1 + c_2 t)e^{\lambda t}$

Example

- $\ddot{x} 4\dot{x} + 4x = 0$ $x(0) = 3, \quad \dot{x}(0) = 1$
- $\lambda^2 4\lambda + 4 = 0$ $\lambda = 2, 2$ (Real, repeated)

$$x(t) = (c_1 + c_2 t) e^{2t}$$
$$\dot{x}(t) = 2(c_1 + c_2 t) e^{2t} + c_2 e^{2t}$$

Solving for the initial conditions

$$c_1 = 3$$
 $c_2 = -5$

$$x(t) = (3-5t) e^{2t}$$

Particular Solution: Method of Undetermined Coefficients

$$\ddot{x} + a\dot{x} + bx = f(t)$$

Terms in f(t)	Choice of $x_p(t)$	
$k e^{pt}$	ce ^{pt}	
kt^n	$k_n t^n + k_{n-1} t^{n-1} + \dots + k_1 t + k_0$	
k cos wt	$A\cos\omega t + B\sin\omega t$	
k sin <i>w</i> t	$A\cos\omega t + B\sin\omega t$	

Substitute these expressions back in the differential equation and determine the unknown coefficients

Example

Find $x_p(t)$ for $\ddot{x} - 3\dot{x} + 2x = 4t + e^{3t}$

Choose $x_p(t) = (k_1 t + k_0) + c e^{3t}$

Substitute and equate the coefficients

$$k_1 = 2, \quad k_0 = 3, \quad c = \frac{1}{2}$$

:
$$x_p(t) = (2t+3) + \frac{1}{2}e^{3t}$$

Second order system in Standard form

$$\ddot{c} + 2\varsigma \omega_n \dot{c} + \omega_n^2 c = \omega_n^2 u$$

$$\omega_n : \text{ Natural frequency}$$

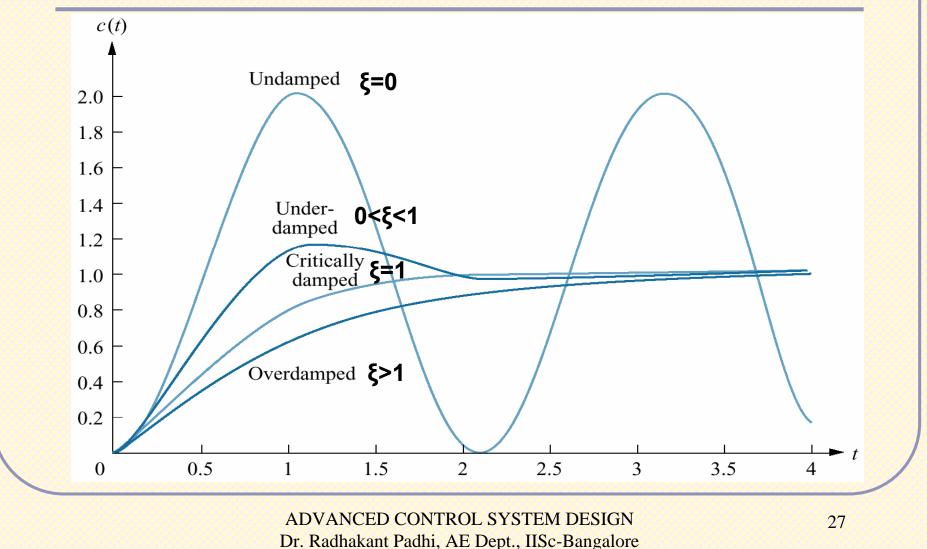
$$\varsigma : \text{ Damping ratio}$$

Transfer function (will be studied later):

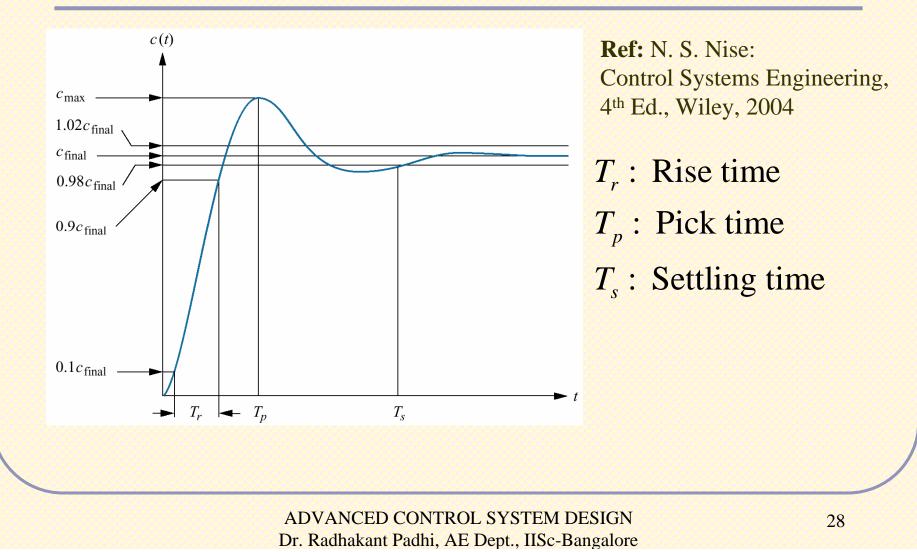
$$\frac{C(s)}{U(s)} = \frac{\omega_n^2}{s^2 + 2\varsigma \omega_n s + \omega_n^2}$$

Roots: poles

Unit Step Response of a Second-order System



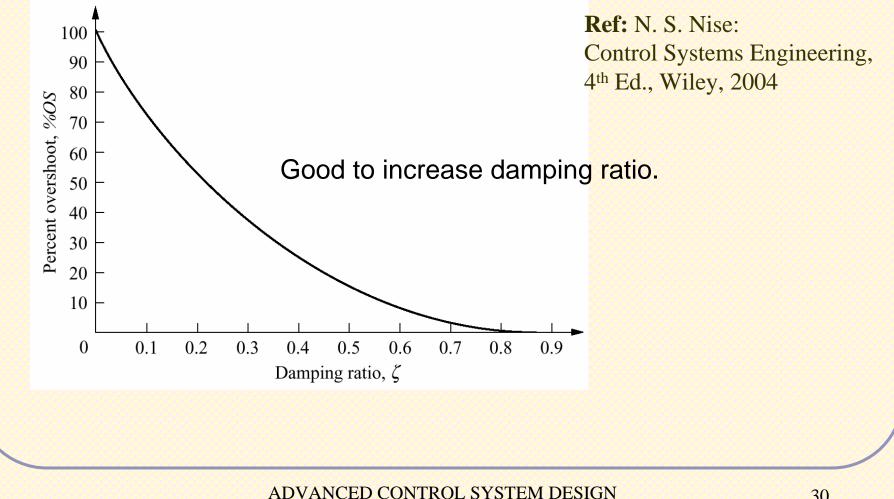
Under-damped system response specifications



Transient Response Specifications

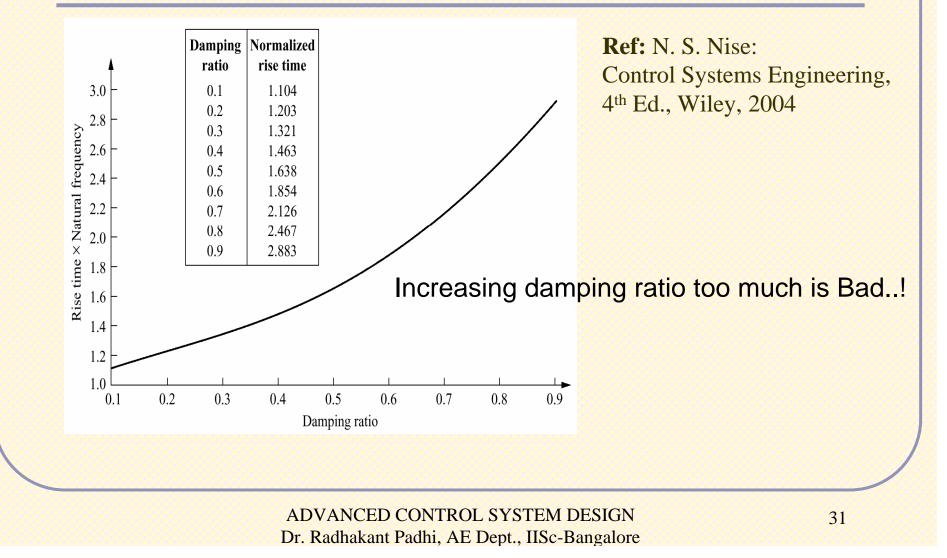
Rise time: $T_r = \frac{\pi - \beta}{\omega_d}$, Peak time: $T_p = \frac{\pi}{\omega_d}$ Damped natural frequency: $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ Maximum over shoot: $M_p = e^{\left(-\pi\xi/\sqrt{1-\zeta^2}\right)}$ Settling time: $T_s = \frac{4}{\xi \omega_n}$ (2% criterion) $=\frac{3}{\xi\omega_{r}}\quad (5\%\ criterion)$

Percentage over-shoot as a function of damping ratio

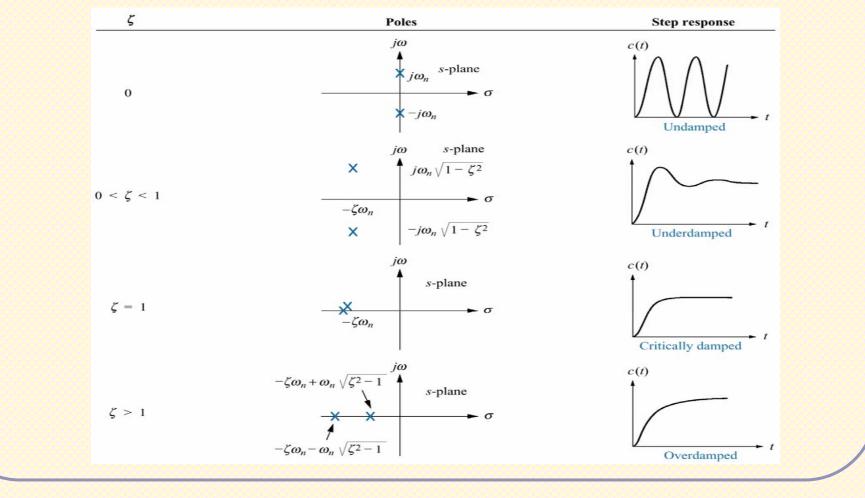


Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

Rise time as a function of damping ratio



Second-order System Response as a Function of Damping Ratio



ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

