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Problem:
AX b=

where

X A X B U= +
: controlled state
: uncontrolled state

C
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X
X

( ) ( )dim dimCX U m= =

Linear Equations: Solution Technique

?X =
0b ≠A is nonsingular,

Motivation:
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1 1cX A X B U= +

This will be the controller necessary to maintain       
at steady state

cX
0

Motivation: Continued

( )1
1 1U B A X−= −

Which gives

Note: B1 is square
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Solution Technique:  Direct Inversion of A

Computation of         Involves too many 
computations, roughly           number of 
operations (very inefficient for large n).

This approach also suffers from the problem of 
sensitivity (ill-conditioning) ,when

Round off errors may lead to large inaccuracies

2 !n n×

1−A

0A →

1X A b−=
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Solution Technique: Gauss Elimination
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Example:

Solution Steps:

Step-I: Multiply row-1 with  -1/2 and add to the row-2. 
row-3 keep unchanged, since a31=0.

o Do row operations to reduce the A matrix to a upper 
triangular form

o Solve the variable from down to top
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Step-II: Multiply row-2 with -2/3 and add to row-3
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Final Solution

Upper Triangle Matrix

Solution Technique: Gauss Elimination
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Gauss Elimination
o The total number of operations needed is

which is far lesser than computing                         
(which requires               operations )

o The Gauss elimination method will encounter 
potential problems when the pivot elements i.e.. 
diagonal elements become zero, or very close to 
zero at any stage of elimination.

o In such cases the order of equations can be changed 
by exchanging rows and the procedure can be 
continued

( ) 32 / 3 n

( )
A

AadjA =−1 2 !n n×
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Nonlinear Algebraic Equations

Motivation: Finding the forced equilibrium condition for a nonlinear 
system to get an appropriate operating point for linearization

( ) 0=XF ?X =

( ),X f X U=
( )
( )

,
,

CC

N N

f X UX
X f X U

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

( )0 0,C CX f X U=

Solve for 0U from ( ) 0Cf U =

Problem:

( ) ( ) ( )dim dim dimC CX f U= =

0
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Newton-Raphson Method: Scalar Case

( ) ( )

( )

1

   ( ) 0
Using Taylor series expansion

( )

( )
( )

From the above equation with an initial guess
we can iteratively solve for 

k

k

k k k k
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k k
x
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k k
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f x

dff x x f x x higher order terms
dx

df x f x
dx

f xx x
f x+

=

⎡ ⎤+ Δ ≈ + Δ + +⎢ ⎥⎣ ⎦

⎡ ⎤ Δ = −⎢ ⎥⎣ ⎦

= −
′

     with   x x tolerenceΔ <

0
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Newton-Raphson Method:  Scalar Case
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( ) ( )

kA

k k k k
k

FF X X F X X
X

∂⎡ ⎤+ Δ ≈ + Δ⎢ ⎥∂⎣ ⎦

( )k k kA X F XΔ = −

( )1 k k kX A F X−Δ = −Solve for

Update 1k k kX X X+ = + Δ

Newton-Raphson Method: Multi Variable Case

( ) 0F X =
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o Start with guess value  x1

o Solve for 
o Update
o Continue until convergence

kxΔ
( )1 1, 2, ...k k kx x x k+ = + Δ =

Newton-Raphson Method: Algorithm

Convergence Condition

( )
Absolute Error

tolkf x <

1.

2.

( )1 1

Relative Error

/ < tol,
k i i ia k k kx x x  k

+ +
∈ − ∀
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Example: N-R Method
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 Find a root of the following equation
0 165 3 993x10 0

 3 0 33 . Let  0.02. Then
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 ' 5.4x10
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Newton-Raphson Method: Advantages 

If it converges, it converges fast!
It has “Quadratic convergence” property, i.e.

Problem: It requires good initial guess in general 
to converge to the right solution.

( )2 *
1

* 

  , where     

 is a constant
is the actual root

k k k ke ce e x x

c
x

+ = −
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Newton-Raphson Method: Limitations

Non-convergence at Inflection points

Inflection point  x=1

For a function f(x) the points 
where the concavity changes 
from up-to-down or down-
to-up are called inflection 
points.

( ) ( ) 01 3 =−= xxf
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Newton-Raphson Method: Limitations
Root Jumping

Cases where f (x) is 
oscillating and has a 
number of roots

Initial Guess near 
to one root may 
produce another 
root

Example:
( ) sin( ) 0f x x= =

Produced root  x=0
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Newton-Raphson Method: Limitations
Oscillations around local minima or maxima
Results may oscillate about the local maximum or minimum 
without converging on a root but converging on the local 
maximum or minimum. Eventually, it may lead to division to 
a number close to zero and may diverge.

2( ) 2f x x= +

f(x) has no real roots 
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Newton-Raphson Method: Limitations
Division by zero

( ) 3 2 6

2

0 03 2.4x10 0

( ) 3 0.06

-f x x - . x +

f x x x

= =

′ = −

If  f '(xi ) ≈ 0 at some xi , xi+1 becomes very large value

Even after several 
iterations there is no 
convergence!
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N-R Method Drawbacks

f'(x*)  is unbounded
If the derivative of  f(x) is unbounded at the
root then Newton-Raphson method will not 
converge.

Exercise:  Verify  for f(x)=√x



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

20

Numerical Differentiation

Central
difference

Backward 
difference

Forward 
difference

ErrorNumerical 
Approximation

DefinitionTechnique 
Name

( )2O xΔ

( )O xΔ( ) ( )0 0f x x f x
x

+ Δ −
Δ

( ) ( )0 0f x f x x
x

− − Δ
Δ

( ) ( )0 0

2
f x x f x x

x
+Δ − −Δ

Δ

( ) ( )
0

lim
x

f x x f x
xΔ →

+Δ −⎡ ⎤
⎢ ⎥Δ⎣ ⎦

( ) ( )
0

lim
x

f x f x x
xΔ →

− −Δ⎡ ⎤
⎢ ⎥Δ⎣ ⎦

( ) ( )
0

lim
2x

f x x f x x
xΔ →

+Δ − −Δ⎡ ⎤
⎢ ⎥Δ⎣ ⎦

( )O xΔ

df
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Numerical Integration

Trapezoidal Rule: 

Note: Numerical Differentiation is “Error Amplifying’’.
where as Numerical Integration is “Error Smoothing’’. 

I1 I2 ----- In-1   In 

f1

f2

f3
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Numerical Integration
o Trapezoidal Rule:

( ) ( )

( ) ( )

[ ]

1 2 -1

0 1 1 2

2 1 1

0 1 2 1

1 1
2 2

1 1
2 2

2 2 2
2

n n

n n n n

n n

I I I I I

x f f x f f

x f f x f f

x f f f f f

− − −

−

≈ + + + +

= Δ + + Δ + +

+ Δ + + Δ +

Δ
= + + + + +

0
1 1I

2 2
n

n
f ff f x−

⎛ ⎞≈ + + + + Δ⎜ ⎟
⎝ ⎠
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Ordinary Differential Equation (ODE)

Ordinary: only one independent variable
Differential Equation: unknown functions 
enter into the equation through its derivatives
Order: highest derivative in f
Degree: exponent of the highest derivative

2

2

43

3

( ) ( ) ( ), , , 0

( ): ( ) 0

d e g re e  =  4 ;  o rd e r  =  3

n

n

d x t d x t d x tf x
d t d t d t

d x tE x a m p le x t
d t

⎛ ⎞
=⎜ ⎟

⎝ ⎠

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
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What Is Solution of ODE ??
A problem involving ODE is not completely 

specified by its equation
ODE has to be supplemented with boundary 

conditions.
Initial value problem: x is given at some starting 

value ti , and it is desired to find at some final points  tf
or  at some discrete list of points. 

Two point boundary value problem: Boundary 
conditions are specified at more than one t ; typically 
some of the conditions will be specified at ti and some 
at  tf .
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Numerical Solution to Initial Value Problem

A numerical solution to this problem generates 
sequence of values for the independent variable 
t1,t2,…tn and a corresponding sequence of values 
of the dependent variable x1,x2….,xn so that each
xn approximates solution at tn

xn ≈ x (tn)   n=0,1,2….n.

0 0
( ) ( , ( )); ( )dx t f t x t x t x

dt
= =
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Basic Concepts of Numerical Methods to Solve 
ODEs

1  slope of tangentn nx x
t

+ −
≈

Δ
We can calculate the 
tangent slope at any point. 
In fact the differential 
equation 

( )

( )

( ) , ( )  defines the 

tangent slope  , ( )

dx t f t x t
dt

f t x t

=

=
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Euler’s Method
Solve                           with 

At start of time step

Forward difference 

Start with initial conditions  t0=0;  x0=b

( , )dx f t x
dt

= (0)x b=

1

1

( , )

Rearranging

n n
n n

n n n

x x f t x
t

x x t f

+

+

−
≈

Δ

= + Δ
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• Euler integration has error of the order of

• Small step size        may be needed for good  
accuracy. This is in conflict with the 
computational load advantage.

• Lesser computational load

tΔ

Euler Integration: Useful Comments

( )2tΔ
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Runge-Kutta Fourth Order Method

where
( )1 ,i ik f t x=

2 1

1 1,
2 2i ik f t t x k t⎛ ⎞= + Δ + Δ⎜ ⎟

⎝ ⎠

3 2

1 1,
2 2i ik f t t x k t⎛ ⎞= + Δ + Δ⎜ ⎟

⎝ ⎠

( )4 3,i ik f t t x k t= + Δ + Δ

( )1 1 2 3 42 2
6i i

tx x k k k k+

Δ
= + + + +

In each step the derivative is calculated 
at four points, once at the initial point, 
twice at trial mid points and once at 
trial end point
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{ }( )5tθ Δ

Runge-Kutta Algorithm 

Error

The method uses a 4th order power series 
approximation to come up with this 
algorithm. Hence, the algorithm is called 
RK-4 method
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