Lecture – 13 Review of Matrix Theory – ^I

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Definition and Examples

- **Definition:** Matrix is a collection of elements (numbers) arranged in rows and columns.
- z **Examples:**

$$
A_{1\times3} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \quad B_{3\times1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad C_{2\times3} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix},
$$

$$
D_{3\times2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \quad E_{3\times3} = \begin{bmatrix} 1 & 4 & 6 \\ 4 & 2 & 5 \\ 6 & 5 & 3 \end{bmatrix}
$$

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Definitions

- \bullet • Symmetric matrix: $A = A^T$
- \bullet Singular matrix: $A=0$
- \bullet • Inverse of a matrix: B is inverse of A iff $AB = BA = I$

 $A^{-1} = adj(A)/|A|$

- \bullet • Orthogonal matrix: $AA^T = A^T A = I$
	- Example: $(\theta) = \begin{vmatrix} \cos \theta & -\sin \sin \theta & \cos \theta \end{vmatrix}$ *T* θ = $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$ $\begin{bmatrix} \cos \theta & -\sin \theta \end{bmatrix}$ $=\sin \theta \cos \theta$

•Result: Columns of an orthogonal matrix are orthonormal.

Eigenvalues and Eigenvectors

Matrices also act as linear operators with "stretching" and "rotation" operations.

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Eigenvalues and Eigenvectors

- \bullet Question: Can we find a direction (vector), along which the matrix will act only as a stretching operator?
- Answer: If such a solution exists, then

 \bullet

$$
AX = \lambda X \implies (\lambda I - A)X = 0
$$

• For nontrivial solution, $|\lambda I - A| = 0$

 \bullet Utility: Stability and control, Model reduction, Principal component analysis etc.

Eigenvalues and Eigenvectors: Some useful properties

- **e** If $\lambda_1, \lambda_2, ..., \lambda_n$ are eigenvalues of $A_{n \times n}$ then for any positive integer *m*, $\textcolor{black}{\lambda_1^{\,m}}$, $\textcolor{black}{\lambda_2^{\,m}}$, ... , are eigenvalues of *m A* λ_1^m , λ_2^m , ..., λ_n^m
- **•** If A is a nonsingular matrix with eigenvalues , then $\lambda_1^{-1} \lambda_2^{-1}$ λ_n^{-1} are eigenvalues of A^{-1} $\frac{1}{2}$ 1 $1 \cdot \cdot \cdot \cdot$ $\lambda_1, \lambda_2, \ldots, \lambda_n$, then $\lambda_1^{-1}, \lambda_2^{-1}, \ldots, \lambda_n^{-1}$
- **For triangular matrix, the eigenvalues are** the **diagonal elements**

Eigenvalues and Eigenvectors: Some useful properties

- **If a** $A_{n\times n}$ **matrix is symmetric, its eigenvalues are all** *REAL***. Moreover, it has n linearly-independent eigenvectors.**
- If $A_{n\times n}$ has *n* real eigenvalues and *n* real orthogonal eigenvectors, then the matrix is symmetric
- $A^T A$ and $A A^T$ are always positive semi definite. AA^T
- **•** If A is a positive definite symmetric matrix, then every principal sub-matrix of A is also symmetric and positive definite. In particular, the diagonal elements of A are positive.

Generalized Eigenvectors

If an eigenvalue is repeated *p* times, there may or may not be *p* linearly independent eigenvectors corresponding to it. In case linearly independent eigenvalues cannot be found, generalized eigenvectors are the next option.

Example:

(a) $(A - \lambda_1 I)V_1 = 0$ (b) $(A - \lambda_2 I)V_2 = 0$ (c) $(A - \lambda_3 I)V_3 = V_2$ Suppose $A_{3\times 3}$ has eigenvalues $\lambda_1, \lambda_2, \lambda_2$. Then eigenvectors V_1, V_2 and generalized eigenvector V₃ can be found as follows:

Vector Norm

Vector norm is a "real valued function" with the following properties:

(a)
$$
||X|| > 0
$$
 and $||X|| = 0$ only if $X = 0$ \n(b) $||\alpha|X|| = |\alpha| ||X||$ \n(c) $||X + Y|| \le ||X|| + ||Y|| \quad \forall X, Y$

Vector Norm

$$
||X||_1 = |x_1| + |x_2| + \dots + |x_n|
$$
 (*l*₁ norm)
\n
$$
||X||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{1/2}
$$
 (*l*₂ norm)
\n
$$
||X||_3 = (|x_1|^3 + |x_2|^3 + \dots + |x_n|^3)^{1/3}
$$
 (*l*₃ norm)
\n
$$
||X||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}
$$
 (*l*_p norm)
\n
$$
||X||_{\infty} = (|x_1|^{\infty} + |x_2|^{\infty} + \dots + |x_n|^{\infty})^{1/\infty} = \max_i |x_i|
$$
 (*l* _{∞} norm)

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

Matrix/Operator/Induced Norm

Definition:

$$
||A|| = \max_{X \neq 0} \frac{||AX||}{||X||} = \max_{||X||=1} (||AX||)
$$

Properties:

(a)
$$
||A|| > 0
$$
 and $||A|| = 0$ only if $A = 0$
\n(b) $||\alpha |A|| = |\alpha| ||A||$
\n(c) $|| |A + B|| \le ||A|| + ||B||$
\n(d) $|| |AB|| \le ||A|| ||B||$

Matrix/Operator/Induced Norm

z 1-Norm

$$
||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|:
$$
 Largest of the absolute column sums

z 2-Norm

 $\mathcal{L}_2 = \sigma_{\max} (A)$ $A\|_{\Omega} = \sigma_{\max}(A)$: Largest Singular Value

z∞ -Norm 1 $\max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$: Largest of the absolute row sums *n* $\sum_{j=1}^{\infty}$ $\begin{bmatrix} a_{ij} \\ b_{ij} \end{bmatrix}$ $A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{i=1}^{\infty} |a_i|$ $\frac{1}{2}$ ∑

Matrix/Operator/Induced Norm

- **Frobenius Norm**
	- Holds good for non-square matrices as well
	- Used frequently in neural network and adaptive control literature

$$
||A_{m \times n}||_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}
$$

Spectral Radius

For $A_{_{n\times n}}$ with eigenvalues $\lambda_{_{1}},\lambda_{_{2}},...,\lambda_{_{n}}$ the spectral radius $\rho(A)$ is defined as $(A) = \max_{1 \le i \le n} | \lambda_i |$ $\rho(A) = \max_{1 \le i \le n} |\lambda_i|$ =

A Result:

$$
||A||_2 = \left[\rho\left(A^T A\right)\right]^{1/2}
$$

If A is symmetric, then

$$
\|A\|_2 = \left[\rho\left(A^T A\right)\right]^{1/2} = \left[\rho\left(A^2\right)\right]^{1/2} = \left[\left(\rho(A)\right)^2\right]^{1/2} = \rho(A)
$$

Least Square Solutions

System: $AX = b$ where $A \in R^{m \times n}$, $X \in R^n$, $AX = b$ where $A \in R^{m \times n}$, $X \in R^n$, $b \in R^m$

Case 1: (No. of equations = No. of variables) $(m = n \text{ and } |A| \neq 0)$

Unique solution: $X = A^{-1}b$ $=A^{-1}$

Least square solutions

 $\textbf{Case 2: } (m \leq n)$ (under constrained problem)

(No. of equations < No. of variables)

In this case, there are infinitely many solutions. One way to get a meaningful solution is to formulate the following optimization problem:

Minimize $J = \|X\|_2^2$, Subject to $AX = b$ =

Solution $X = A^+b$, where $A^+ = A^T (AA^T)^{-1}$ (right pseudo inverse)

This solution WILL satisfy the equation $AX = b$ exactly.

Least square solutions

 $\textbf{Case 2:} \quad (m > n)$ (over constrained problem)

(No. of equations > No. of variables)

In this case, there is no solution. However, one way to get a meaningful (error minimizing) solution is to formulate the following optimization problem:

Minimize: $J = \|AX - b\|_2$

Solution: $X = A^{\dagger}b$, where $A^{\dagger} = (A^T A)^{-1} A^T$ (left pseudo inverse)

This solution need not satisfy the equation $AX = b$ exactly.

Generalized/Pseudo Inverse

- Left pseudo inverse: $A^+ = (A^T A)^{-1} A^T$ $f^* = (A^T A)^{-1}$
- Right pseudo inverse: $A^{\scriptscriptstyle +}=A^{\scriptscriptstyle T}\big(A A^{\scriptscriptstyle T}\big)^{\!\scriptscriptstyle -1}$ $A^+ = A^T (A A^T)$
- Properties: (*a*) $A A^+ A = A$ (c) $(A A⁺)$ (d) (A^+A) (e) $A^+ = A^{-1}$, if A is square and $|A| \neq 0$ $(A^{\dagger} A A^{\dagger} = A)$ *c*) $(AA^{+})^{T} = AA$ *d*) $(A^+A)^{T} = A^+A$ $+A=$ $A^+ A A^+ = A^+$ $^{+}$ $=$ A A⁺ $(A^{\dagger} = A^+)$ $^+=A^{-1}$, if A is square and $|A| \neq$

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore