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State Space Representation
(noise free linear systems)

Sl SPace rorm A - System matrix- n x n

X =AX +BU B - Input matrix- n x m

Y =CX +DU C - Output matrix- p X n
Transfer Function form D - Feedforward matrix —p xm

Forward

N B transfer
Actuating -

SRS function

LI e I ) Q: Is conversion between
_ the two forms possible?
R(s) KG(s) Cls)
T e [T AL YeS.

Input
R(s) +

H(s) |

Feedback
transfer
function
(a) (b)
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Deriving Transfer Function Model
From Linear State Space Model

Known:

X = AX + BU
Y —EX )

Taking Laplace transform (with zero initial conditions)
sX(s) = AX(s)+BU(s)
Y(s)=CX(s)+ DU (s)

ADVANCED CONTROL SYSTEM DESIGN 3
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



Deriving Transfer functions from
State Space Description

The state equation can be placed in the form
(sl — A)X(s) =BU(s)
Pre-multiplying both sides by (sl — A)_1
X (s) = (sl —A)BU(s)

Substituting for X (s) in the output equation,
Y(s)=|C(sl -A)*B+D |U(s)

. /

Transfer Function Matrix T (S)
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Example

State space model

HEER M

4

ool

C
Using the expression for derived transfer function

ey o1 1
U(s) s2+3s+2 (s+1)(s+2)
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Example: Detail Algebra

T(s)=C(sl—A) B+D

L o] ;

-1 0]

fé )

1
\s(s+3)+2)

-1 0]

= 1

B

e el
_2 S+3 1

1 0]
B2 a S
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Deriving State Space Model
From Transfer Function Model

The process of converting transfer function to state
space form is NOT unique. There are various
“realizations” possible.

All realizations are “equivalent” (i.e. properties do not
change). However, one representation may have some
advantages over others for a particular task.

Possible representations:
First companion form (controllable canonical form)
Jordan canonical form
Alternate first companion form (Toeplitz first companion form)
Second companion form (observable canonical form)
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First Companion Form: SISO Case
(Controllable canonical form)

e 1
u(s) |s"+as""+---+a,,5+a

n

P gAY

d n d n-1
dt”y + a, dt”‘zl + - +ay=u
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First Companion Form: SISO Case
(Controllable canonical form)

Choose output y(t) and its (n—1) derivatives as

: : o
X=Y %, = d_)t’
X2 = % . d 2y
: t —>differentiating—— | "?  dt?
n-1 .
Xn S C(ijtnil ‘L dny
_ _ Ee e di
ADVANCED CONTROL SYSTEM DESIGN 9

Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



First Companion Form: SISO Case
(Controllable canonical form)

X, 0 i 0 A e e ) X, 0
X, 0 0 1 Bl e ) X, 0
X, 0 0 0 (B PRt § Bt ) X, 0
5 = : : ; 5 : : : e 0 u
e 0 0 0 G S B e 0
R R e SR d e S
.
X2
g Hoo . 0 o
Xn—l
_
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First Companion Form: SISO Case
(Controllable canonical form): Block Diagram

\

%

UL

iy Ay -1 iy
n integrators
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Example:
(Constant in the Numerator)

R(s) 24 C(s)
3 integrators s+ 957+ 265 + 24

r (1) - x5(0) x53(7)

.\;2{1)
I <

|

x (1) y(Q@)

' ot

(s®+9s? + 265+ 24)C(s) = 24R(s)
with zero initial conditions
C+9C+ 26C + 24c = 24r

A

A . A ..
Let x,=c¢, X,=¢C, X,=¢C

24

26 .
X, = X,
X, = X,
X, = —24X, — 26X, —9X, + 24r
y=0C=X,
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Example:

(Polynomial in the Numerator)

For the block containing denominator >
(s° +9s” + 265 +24) X, (s) = 24R(s)

X =X,

X, =X

X, =—24X — 26X, —9X, +r
For Numerator Block
C(s)=(s*+7s+2)X,(s)

Taking inverse Laplace transform

Yy =X, +7X, +2X%,

R(\] 5‘2 F g+ (_(\] .
§3+ 952+ 265+ 24
R(s) | Xi(s) . C(s)
» - §ct st 2 -
534952+ 265+ 24
[nternal variables:
XQ(S), X}(S)
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Example With A Polynomial In

The Numerator

i

3 integrators

r(1)

X5( !l

X5 (2 L

26

24
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Systems Having Single Input but
Multiple Outputs

Generalization of the concepts discussed to
this case Is straight forward:

s+ A and B matrices remain same

* C and D matrices get modified
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Example
y,(S) H. (s) 2S5+ 3

=H,(s) =—; and
u(s) 3s°+4s+5
Y, (S) i 35+ 2
sy - 352 +4s+5
H (S)= yl(S) = @ yl(S) e ( 1 j(23+3)
: s i ) 3s? +4s+5
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Example - contd.

a4 o5 0 : A R
Z+—11—-7——1 Define X —72 % —
S
il 0 ik "xl_+_0_u
_Xz_ . B 5/3 5 4/3__)(2_ _1/3_

V=27 E 57 — 20 o)

=k 7

2

+[0]u
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Example - contd.

H, () =| 222 | 2°8) :( : j(33+2)
. u(s) )\ z(s) S LAl

A and B are the same

Y, =3Z+2Z=3X, +2X

y | 3]@1}[0]11

2
Note: Block diagram representation is fairly straight forward.
The realization requires n integrators.
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Jordan Canonical Form
(Non-repeated roots)
=) g o8 b §
u(s) e S
All the poles of the transfer function are distinct, i.e. no repeated poles

r's are called "residues” of the reduced transfer function [H (s)— bo]

= ru(s) nu(s) ~ ru(s)
y(s)—dou(s)+s_ﬂ1+s_22+ +5—/1n
Let
(@=L e e
. :
X,(S) = L u(/sl) | X —AX, =ru|
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Jordan Canonical Form
(Non-repeated roots)

\

X o4 9 =2 Ol
X.z = 0 ﬂ“z 2 0 X.z 4 r.z !
: Bl :
v e e
_Xl_
X

y—[1 1 . I 52 +[d, Ju
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Jordan Canonical Form
(Non-repeated roots): Block Diagram

=
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Jordan Canonical Form: Example

(Non-repeated roots)

Given

By partial fraction,

biGl
u(s)

y(s) =

Define two transfer functions

1
(s+1)(s+2)
_ .

S+1 s+2

46 =T U, % (8)=—u(s)
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Jordan Canonical Form: Example
(Non-repeated roots)

This leads to

u(s) = X, (s)(s+1), u(s) =%,(s)(s+2)

Differential equations corresponding to the x, , X,

Xlzu_xl Xl _—1 O__Xl_ _1_u
. = +
XZ =U—- 2X2 el 0 _2_ X5 _1_
. e e
Output Equation & .
Y M N _1]_x2_
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Jordan Canonical Form: Example
Repeated Roots

i

H(s)=

Following the same procedure

Ve o 2
u@s) (s-3)
() = X —3X% =X,

X, (S) :

53_ - = X, —3X, = X,
—U(S) =% X, —3X, =U
s—3
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Jordan Canonical Form: Example
Repeated Roots

: e B 1 1 u(s)
Output Equation  Y(s) = (5-3) u(s) —2(3_3) (3_3){(3_3)}

N J/

Xs\(fs )

= 2X,(8)
| (5-3)(s-3) “(s-9
Flna”y _)'(1— _3 1 O—_Xl— _O_
X, =10 3 1{x,|+(0]u
G0 e ariae i
T C T
y=[2 0 0]X+[0]u
SR o
© D
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Jordan Canonical Form:
What if complex conjugate roots?

Roots always exist in complex conjugate pairs!

A+ Ju 2 A—Jo

H .=
" s+(o-jo) s+(o+jo)

: 2[/13 +(Ao— a)u)]

The system can be realized
partially in other forms
(like First companion form)

SZ+208+(02+602)

First companion form:

vty 2ol
Vi, =| 2(A0 - 0v) zz]{zj
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