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Reference Frames and
Dynamic Variables
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Center of
Gravity
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X
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frame v=
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Dynamic (Force and Moment) Equations

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 71995

Center of
Gravity

Pitch Axis
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Kinematic Equations
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Orientation of Airplane wrt.
Inertial Frame: Euler Angles

Translate the inertial
frame and make it
coincide with the CG

Make the sequential

transformation of this
frame so as to make

it parallel to the body
frame.

Z’

Common sequence: ¥, 0, ©
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Euler Angles

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995

Translate X’Y'Z' parallel to itself until its center

coincides with the XYZ system. Rename
XY'Z as X,Y,Z, for convenience.

Xy
U,

Xz
u
2 \\

l—-——-——--- ——
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v /
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|
|
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|
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Rotate the system X,Y,Z, about

Z,axis over an angle i/
This yields the coordinate system
X, Y2,
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Euler Angles

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995

Rotate the system X,Y,Z, about
Y, axis over an angle ®
This yields the coordinate

system X;Y;Z,
: Rotate the system X,Y,Z,
P Vs s
Wi L about Y, axis over an angle @
o ! This yields the coordinate
/% system XYZ
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/Flight Path Relative to Earth Fixed \
Coordinates (Inertial Frame)

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995

N e T

X'| |U,
y’ == V1
_z’_ ‘W,

SR e S G e
U /| [cos¥ -sin®? 0|/U,
V, |=|sin¥Y cos¥ O]}V,

\ _W1 i 0 0 1_ _W2 : N : /
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l. ROTATION OVER
HEADING ANGLE W
ABOUT Z,

NOTE : W, =W,




/Flight Path Relative to Earth Fixed \
Coordinates (Inertial Frame)

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995
ez = X
U,| [cos® 0 -sin®][U
Ve e
W,| [sin® 0 cos® ||W,

X2 e
e 0 g U
V, |[=|0 cos® —sin® ||V

\WB 0 sin® cos® ||W
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Flight Path Relative to Earth Fixed

Coordinates (Inertial Frame)
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Relationship Between ¥ @, and
P,Q,R

—

:iP+jQ+kR:‘i’+(j)+6f>

<

However,

¥ = k¥ =k, ¥ (Rotation is about Z,) X"
® = j,® = j.® (Rotation is about Y,)

Z'

S

= i;d =i® (Rotation is about X,)
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Relationship Between ¥ @, and
P,Q,R

Using co-ordinate transformation rules, we can write:
K, =—1,SIN O + K, Cos O

j.| [cos® —sin®d || j

Ky | [sSind cosd ||k

Using these relationships, we can write:
&={-isin@+cosO( jsin®+kcosd)| ¥
+(jcos® —ksin®)O+id
=P+ JQ+kR
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Relationship Between ¥ @, and
P,Q,R

Equating the coefficients,
P=d-¥sin®
Q=0cosd+¥cos@sin D
R=%¥cos®cos®—0Osind
In matrix form,

P 1 0 —SIin® ()
Q|=|0 cosd® cosOsind || O
R| |0 —sin® cos®cosd || ¥
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Relationship Between ¥ @, and

P,Q,R
Taking the inverse transformation,
b Bl () —sin® | [P

®|=|0 cos® cos®sin®| |Q
Y| |0 -sin®d cos@cos® | |R

P+Qsin®tan®+Rcos®tan®
= Qcosd —RsIND

(Qsin® +Rcos®)sec®
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Components of Gravitational
Force in Body Co-ordinates

k'g =k g =ig, + jg, +kg, \
It is desirable to express g, 9,9, Y
In terms of g and Euler angles ® and ®. .

Note that ¥ does not affect the
component of gravity because k, =k, .
Note that:

i, =i (i, j,k : Body frame)

kK, =kcosd + jsin®
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Components of Gravitational
Force

K, =—1,SINn® +k,cos® (already derived) X

=—i,Sin®+(kcos® + jsin®)cos® Y \\cG
But k ,=k,, we get: !
k.g :g[—isin®+(kcos®+ jsinCD)cos@] : \/
=1ig, + jg, + kg, : l

v
Comparing the coefficients of I, j,k one can write:

dy =—0sin®

g, =gsin®cos®

g, =gcosdcos®

ADVANCED CONTROL SYSTEM DESIGN 17
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



/ \

Kinematic Equations

Rate of Change of Euler Angles:

Flight Path in the Inertial Frame:

\&
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Complete Six-DOF Model
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/Airplane Dynamics: \
Six Degree-of-Freedom Model

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995

e VR—WQ—gsin®+%(X +X;)

Ve WP—UR+gsinCI)cos®+i(Y +Y;)
m

W = UQ—VP+gcos®cos®+%(Z+ZT)
P =cQR+c,PQ+c,(L +L;)+c,(N+N;)
Q =c;PR—c;(P*—R?)+c, (M +M;)

R=c,PQ-c,QR+cC,(L+L;)+¢ (N +N;)

® =P+Qsin®tan®+ Rcosd tan ®

®=QCOS(D—RSinCD X cosy —siny 0|l cosd 0 singd||1 O 0 U

: : V,| =|singy cosy O O 1 0 ||0 cosg —sing||V
S (QSIHCD+RCOSCD)SEC® Z, 0 0 1||-sin@ 0 cos@||0 sing cos¢g ||W
1=—2, =Usin®-V cos@sin ® —W cos ® cos @
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/Airplane Dynamics:
Six Degree-of-Freedom Model

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995

g

where

. (b= 1) =12 | g =1, -1 )1,
c: (L] co=1,/1,
Gl . e 1/l
Co | (Iuda—1a%)| bn
Cs L)

. .
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/Airplane Dynamics: \
Six Degree-of-Freedom Model

Ref: Roskam J., Airplane Flight Dynamics and Automatic Controls, 1995

N N N
X, :izzl:Ti cos®; cos\¥, I;(T cos D, sm\PTi) IZzl:(T sin @, )y L= o
max ]
N N
Y, =ZN:Ti cos @, sin ¥, M; = > (T, cos®@; cos\¥; )z, + > (T;sin®, ) x,
i=1 i=1 i=1
N
T. q> T coscp cos ¥, T.cosd.. sm‘P
z sin .=1 )yT +|le( )
X C Goarenalane =
|: :T (a) g a |+ 5E
7 C G Lih e
aafeel:

:
o oS S
Y =g C, 3[0 oo {%D

\M:qsecm=qse[cmo ce ol o i e T(a)

= {cosa —sina

sinaa cosa } /
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Six Degree-of-Freedom Model.:
Important Observations

The Six-DOF model consists of 12 equations, out of
which 3 equations (namely x, y and ) are
decoupled with the non-rotating and flat earth
assumptions. Hence, for flight control design, usually
9 equations are good enough.

One still need to integrate the x, y and w equations,
however, to know the trajectory of the vehicle in the
inertial frame.

The 9 equations are further reduced to 8 equations
(assuming constant height and neglecting the z
equation) and then decoupled into 4 longitudinal
equations and 4 lateral equations in the linearized
(small disturbance) theory.
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Six Degree-of-Freedom Model.:
Important Observations

An airplane is symmetric about its XZ-plane.
Hence:

Xy

l,=1,=0

Missiles and launch vehicles are typically
symmetric about both XZ-plane as well as
XY-plane. Hence:

| =1_=1_=0

Xy yZ ZX
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Other Reference Frames used In
Flight Dynamics

Stability Frame

Body frame is rotated by a about
the Y-axis

Wind Frame

Stability frame is further rotated
by B about stability Z_-axis

Note: Body, Stability and Wind
frame variables are related through
rotational transformations.
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Small-Disturbance Flight Dynamics

Reference: R. C. Nelson, Flight Stability and Automatic
Control, McGraw-Hill, 1989.
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Linearization using Small
Perturbation Theory

Perturbation in the variables:

U=U,+AU V =V, ,+AV W =W, + AW
P AR O AQ R=R,+AR

AR AR N A Z A7

Xp=Xe +AX; Yo =Y +AY, 2, =2, +AL
M=M,+AM N=N,+AN L=L,+AL

O=D,+Ap O=0,+A0 VY=Y ,+Ay
Op =0y, TA0, Op =0g +A0; Oy =0y +A0;,

ADVANCED CONTROL SYSTEM DESIGN 27
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore




Trim Condition for
Straight and Level Flight

Assume: V, =R =Q,=R,=®,=Y; =Z; =0

J

TypicallglfTrue M

Select:  X;,z, (ie hy)
Enforce: U=V =W=P=Q=R=0=0=7 =0
Solve for: U, ,W,, X,,Y,,Z,,L,,M,,N,, 0,

Verify: Y,=L,=M,=N, =0
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Linearization using Small
Perturbation Theory

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

Ax MRy GGy GRS ORs
ouU oW 0, 0,

AY =ﬁAV +ﬂAP +ﬂAR+ )

oV B R

AS,

Az R g sy +%AQ+ 2 AS, +£A5T
oU oW oW oQ 00, 0.

AL :iAV +%AP +iAR+£A5R +iA§A
oV oP oR 05, 095,

Al 2 A0 ey o e O e N s O
oU oW oW oQ 05, 00,

AN :%AV +@AP+%AR+ o Adg +ﬂA5A
oV oP oR 06, 09,
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/State Variable Representation of
Longitudinal Dynamics

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

g

X = AX +BU,

XU
ZU
M, +M,,Z,

State space form:

6 0 -9 |
Lo U, 0
M, +M,Z, M,+M,U; O
0 1 0=
Xs,
Zs,
Mg +MyZs X, :i(a_x) s
0 m\ oU

C

1
m

AU
AW

AQ
AO

AS.
AS,

|

: _(a_x
oW

.
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Phugoid Mode

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

g

* Lightly damped
« Changes in pitch attitude, altitude, velocity
« Constant angle of attack

Motion occurs at
constant angle of attack -

Change :\

Minimum speed

in altitude - &
Lightly ~ Maximum speed
damped ——Long period ———
oscillation

(order of 30 or more seconds)

_
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Phugoid Mode

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

g

\ Damping ratio: ¢, =

_aw
UO
Aa=0 = AW =0

A

State Equations:

Frequency: W,

S G

AU | zU % rau
AG| |=% 0 || A6
2 < _UO :
= —Zy9

U0

__XU

20,
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Short Period Mode

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

<

* Heavily damped
» Short time period
« Constant velocity

Change in \ —

-

Motion occurs at

angle of attack N\’ Time nearlyconstantspeed

Short period (several seconds)

_
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Short Period Mode

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

g

AU =0

State Equations: AW | _ Zy U, AW

Z M,
Frequency: o, = -M,
SP UO

M +M.+Z—“

Q a
0

\Damping Ratio: ¢, = :
a)nsp

|
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State Variable Representation
of Lateral Dynamics

g

State space form: X = AX +BU,

Yv YP _(Uo _YR) g COS ‘90_ AV |
* I % % I % * I *
L, +%NV L, +%NP = +%NR 0 AP
i X X 3 =
EE e g 2R
N, " +-2% N, +2£L" N+-2=L, 0 Ad
Z Z Z — -
i 0 1 0 oy
2 : v, %
I I
L5A +%N5A L5R +%N5R A5A
B o X X C =
I I Aoy
N IXZ Ls, N(sR*JF%LaR
Z Z
= 0 0 -
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State Variable Representation
of Lateral-directional Dynamics

Note: If |, =0, then

Y, Y. —(u,-Ys) gcosé, 0 Y,

pe L, L Ly 0 B=| L,

W 0 MR
Rl 0 O 0 0

Aircraft Responses

« Spiral Mode: Slowly convergent or divergent motion
* Rolling Mode: Highly convergent motion

* Dutch Roll Mode: Lightly damped oscillatory motion
having low frequency
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Lateral Dynamic Instabilities

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

Directional divergence

* Do not possess directional stability

« Tend towards ever-increasing angle
of sideslip

» Largely controlled by rudder

Spiral divergence

 Spiral divergence tends to gradual
spiraling motion & leads to high

\i : Iniial
A

3  flight
ath

Directional/ ,/ 4

divergence

/

Insufficient directional
stability (Cnﬂ]

Directional stability to large
(Cnﬂ] and lateral stability

(C[ﬁi inadequate

Spiral
Divergence

Slideslip
disturbance

. g ; . Initial
speed spiral dive Cowly, hich sses e sesip =t
5 . . angle to increase; the
* Non—oscillatory divergent motion ?irE}{aéef!iETinat‘igmerm
. ighter spiral.
 Largely controlled by ailrons
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Lateral Dynamic Instabilities

Reference: R. C. Nelson, Flight Stability and Automatic Control, McGraw-Hill, 1989.

Dutch roll oscillation -
« Coupled directional-spiral \V;B/

oscillation
- Combination of rolling and \L

yawing oscillation of same

frequency but out of phase
each other y
« Time period can be of 3 to T s =
15 sec /

* Yaw damper is used for improving the system damping and
used to improves both spiral and dutch roll characteristics
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Attitude Representation

Reference: H. Schaub and J. L. Junkins, Analytical
Mechanics of Space Systems, AlIAA, 2003.
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Attitude Representation

Definition: Attitude coordinates are set of
parameters that completely describes the
orientation of a rigid body relative to some
reference frame.

Various Possibilities:
Euler Angles
Direction Cosines
Quaternions (Euler parameters)

Broad Class:
Three parameter representation
Four parameter representation (quaternions)
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Direction cosine matrix

Let the two refrence frames N and B each be defined through sets of
orthonormal right-handed sets of vectors {f} and {6} where
we use the shorthand vectrix notation f'h”

o bz ST j;]

COS 0511 COS CZ]_Z COS a13

}: COSay; COS@y, COScyg |{A}

_COS 0[31 COS 0[32 COS a33 =

{6} = [C]{A}, Cis called the "direction

cosine matrix", Cij = cos(zﬁi , ﬁj) = 6i . ﬁj
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Properties of DCM
» Direction cosine matrix [C] is orthogonal, [C][C]= [l 5]

[ COSa,, COSa, COSc |
{A}=|cosa,, cOSa,, COSa, {b}z[C]T {b},{b}z[C][C]T {b}
| COS¢, COSa,, COSay, |

 Inverse of [C] is the transpose of [C], [C]'=[C]"
« Determinant of DCM is £ 1, det(CC')= det([l,,;])=1

 Direction cosine matrix is the most fundamental, but highly
redundant, method of describing a relative orientation.

« Minimum 3 parameters are used to describe a reference frame
orientation, it has 9 entries, hence 6 extra parameters are redundant

through orthogonality condition.
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Euler angles

Standard set of Euler angles used in aircraft and
missile is (3-2-1)i.e. (,8,P). This sequence is called
asymmetric set.

Other is (3-1-3) set of Euler angles, to define the
orientation of orbit planes of the planets relative to
the earth orbit’s plane. It is called symmetric set.

DCM can be parameterized in terms of the Euler
angles.

Each Euler angle defines a successive rotation
about one of the body axes
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Euler angles

The direction cosine matrix in terms of the (3-2-1)Euler
angles is

co,co, co,s0, =50
C =| s6,s0,c6, —cb,s6, s0,50,s6, +co,co, s6,co, |, where cd =cos, sf =sinb
| CO,80,C0, +50,50, C0,50,50, —sO.cO, cO,cO,

w=6,=tan™ (%) 0=0,=-sin"'(C,), ¢=0,=tan™ (%j

11 33

Euler angles provide a compact,3 parameter attitude
description whose coordinates are easy to visualize
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Quaternion

Another popular set of attitude coordinates are the four Euler
parameters (quaternions-4D vector space).

They provide a redundant, non-singular attitude description and are
well suited to describe arbitrary, large rotations.

4=, +0. K =ij =—ji,i = jk =—kKj, ] = ki =ik
=0, +ig, + jo, +kg, i =j*=k* =ijk=-1

Equality:p=q < Po =Up: P =01, Pr =0y, P3 =03

Addition: p+9=( pg+do )+i( Pr+a )+ J( P2+02 )+k( p3+03)

Multiplication: cq = cq, + cg,l +Cq, ] + Q3K
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Quaternion

Conjugate of quaternion : 9" =q, —id, — jg, —kq,
Norm of quaternion:|ql=+/q'q, |d’=q’q, [q[’=q;+q +0; +0

Unit quaternion (normalized quaternion) : A unit
quaternion, q, is a quaternion such that |g| = 1.

Inverse of quaternion: g 'q=qg =1, q 99" =q'qq  =q"

]
CI e 2
g
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Quaternion: Principal rotation vector

Theorem:

A rigid body or coordinate reference frame can be brought from an
arbitrary initial orientation to an arbitrary final orientation by a single
rigid rotation through a principal angle @ about the “principal axis”.

The Euler parameter vector is defined in terms
5, of the principal rotation elements as

S cos(%), 0, :elsin(%), d, =ezsin(%), 0, =e33in(%)
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Quaternion

The constraint equation in quaternion algebra (a holonomic
constraint) geometrically describes a four-dimensional unit sphere.

Any rotation described through the Euler parameters has a trajectory
on the surface of this constraint sphere.

Euler angles to Quaternion: qozcos(w/)cos(%)cos(qy +Sm(w/)s,n(%)s.n c%
q1=cos( )cos %)sm(qy sm(‘//)sm(%)co

(‘/’Z)sm %)cos qy +sm('f’/)cos(%)sm
q3=sm(‘/’ )cos(ez)cos qy cos(V/)sm(%)sm qy

U)

J,=C0s

2

0o +0; —G; —0; 2(99,+d09:)  2(6,9,—G,0,)
Quaternions to DCM: [C]=| 2(09,-90%) G~-% +9;-0%  2(0,9, +q,%)
2(q1q3 +q0q2) 2(q2q3 _qoq1) Q§ _q12 _q22 +q§
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