Lecture – 6 Classical Control Overview – IV

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lead–Lag Compensator Design

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Motivation

- \bullet The PID controller involves three components:
	- •**Proportional feedback**
	- •**Integral feedback**
	- •**Derivative feedback**
- \bullet Problem in PID design:

•

- **Requirement of pure integrators and pure differentiators, which are difficult to realize**
- • **Pure integrator pole may travel to the right half plane because of realization inaccuracies.**

Question: Can the difficulties of the PID design be avoided, without compromising much on the basic design philosophy?

Answer: YES! Through Lead-Lag compensator design.

Ideal Integral Compensation for Improving SS Error: PI Controller

Lag Compensator (for Improving Steady State Error)

Lag Compensator (for Improving Steady State Error)

Lead Compensator (for Improving Transient Response)

- \bullet Objective:
	- \bullet To improve transient performance, avoiding the pure PD realization
- \bullet Advantages;
	- \bullet Avoids realization difficulties (e.g. avoids requirement of additional power supplies in electrical circuits)
	- \bullet Reduces noise amplification due to differentiation

\bullet Drawback:

• Addition of a pure zero in PD controller tends to reduce the number of branches of Root Locus that travel to RH plane, whereas Led compensators are not capable of doing that.

Geometry of Lead Compensator

 $\theta_2 - \theta_1 - \theta_3 - \theta_4 + \theta_5 = (2k+1)180^\circ$

where $(\theta_2 - \theta_1) = \theta_c$: Angular contribution of compensator

Many Possibilities of Lead **Compensators**

Different selections results in:

- •Different gain values to reach the desired point
- • Different static error constants (that leads to different SS errors); hence different closed loop response in strict sense!

Lead-Lag Compensator Design

Design Steps:

- \bullet First, evaluate the performance of the uncompensated system.
- If necessary, design a "lead compensator" to improve the transient response.
- \bullet Next, design a "lag compensator" to improve the steady state error.
- Simulate the system to be sure that all requirements have been met.
- \bullet Redesign the compensators (i.e. retune the compensator gains), if the simulation performance in not satisfactory.

Ref: N. S. Nise: Control Systems Engineering, 4th Ed., Wiley, 2004

Frequency Response Analysis

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Concept of Frequency Response

Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Concept of Frequency Response

$$
R(s) = \frac{As + B\omega}{s^2 + \omega^2}
$$
 $G(s)$ $C(s)$

$$
r(t) = A\cos\omega t + B\sin\omega t = \sqrt{A^2 + B^2}\cos\left[\omega t - \tan^{-1}(B/A)\right]
$$

= $M_i \cos(\omega t - \phi_i)$, where $M_i = \sqrt{A^2 + B^2}$, $\phi_i = -\tan^{-1}(B/A)$

After appropriate analysis:

 $c_{ss}(t) = M_i M_G \cos\left(\omega t + \phi_i + \phi_G\right)$ $\phi_0 \angle \phi_0 = (M_i \angle \phi_i) (M_G \angle \phi_G)$ $M_{0} \angle \phi_{0} = (M_{i} \angle \phi_{i}) (M_{G} \angle \phi_{G})$ $=M\textsubscript{ i}M\textsubscript{ G}$ cos ($\omega t+\phi\textsubscript{ i}+\phi\textsub{ G}$) where

$$
\boldsymbol{M}_G = \Big|\boldsymbol{G}\big(\boldsymbol{j}\boldsymbol{\omega}\big)\Big|,\quad \boldsymbol{\phi}_G = \angle\boldsymbol{G}\big(\boldsymbol{j}\boldsymbol{\omega}\big)\Big|
$$

What is frequency response?

- \bullet **Magnitude and phase** relationship between sinusoidal input and the steady state output of a linear system is termed as frequency response.
- \bullet Commonly used frequency response analysis:
	- •Bode plot
	- •Nyquist plot
	- •Nichols chart

$$
T(s) = \frac{C(s)}{R(s)}, \ s = j\omega,
$$

$$
T(j\omega) = \frac{C(j\omega)}{R(j\omega)} = M \angle \phi
$$

$$
M = |T(j\omega)|, \ \phi = \angle T(j\omega)
$$

Bode Plot Analysis

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Bode Plot Analysis

- \bullet Bode plot consists of two simultaneous graphs:
	- •• Magnitude in dB (20 log |G(jω)|) vs. frequency (in logω)
	- •• Phase (in degrees) vs. frequency (in logω)

 \bullet Steps:

$$
G(s) = \frac{K(s+z_1)(s+z_2)\cdots(s+z_k)}{s^m(s+p_1)(s+p_2)\cdots(s+p_n)}
$$

Then

$$
20\log|G(j\omega)| = \left[\frac{20\log K + 20\log|(s + z_1)| + \dots + 20\log|(s + z_k)|}{-20\log|s^m| - 20\log|(s + p_1)| - \dots - 20\log|(s + p_n)|}\right]_{s \to j\omega}
$$

$$
\angle G(j\omega) = \left[\left(\angle(s + z_1) + \dots + \angle(s + z_k)\right) - \left(\angle s^m + \angle(s + p_1) + \dots + \angle(s + p_k)\right)\right]_{s \to j\omega}
$$

Bode Diagrams: Advantages

- \bullet All algebra is through addition and subtraction, and that too mostly through straight line asymptotic approximations
- \bullet Low frequency response contains sufficient information about the physical characteristics of most of the practical systems.
- \bullet Experimental determination of a transfer function is possible through Bode plot analysis.

Bode Diagrams

- \bullet In Bode diagrams, frequency ratios are expressed in terms of:
	- •**• Octave: it is a frequency band from** ω_1 **to 2** ω_1 **.**
	- •• Decade: it is a frequency band from ω_1 to 10 ω_1 , where ω_1 is any frequency value.
- The basic factors which occur frequently in an arbitrary transfer function are:
	- •Gain K
	- •• Integral and derivatives: $(j\omega)^{\pm 1}$
	- First order factors:
	- Quadratic Factors:

 $\left(1+j\omega T\right)^{\pm 1}, \ T=\frac{1}{a}$ ω $+ i\omega T$ ^{± 1}, $T =$ $\left(1+2\xi(j\omega/\omega_n)+\left(j\omega/\omega_n\right)^2\right)^{\pm 1}$

±

Bode Diagrams

- **For Constant Gain K, log-magnitude curve is a** horizontal straight line at the magnitude of (20 log K) dB and phase angle is 0 deg.
- \bullet Varying the gain K, raises or lowers the logmagnitude curve of the transfer function by the corresponding constant amount, but has no effect on the phase curve
- \bullet Logarithmic representation of the frequencyresponse curve of factor $(j(\omega / a) + 1)$ can be approximated by two straight-line asymptotes
- \bullet Frequency at which the two asymptotes meet is called the corner frequency or break frequency*.*

Example – 1: $G(s) = s + a$, $G(j\omega) = j\omega + a$

- At low frequencies, $\omega \ll a$, $G(j\omega) \approx a$
- \bullet Magnitude/Phase response:

 $20\log M = 20\log a$, $\angle G(j\omega) = 0^0$

- At high frequencies, $\omega >> a$, $G(j\omega) \approx j\omega$
- \bullet Magnitude/Phase response:

 \bullet

Corner frequency: $20 \log M = 20 \log \omega$, $\angle G(j\omega) = 90^\circ$ $\omega_c = a$ $\pm\pi$ $G(j\omega) = j\omega + a = a \mid j \rightarrow +1$ *a* ω) = $i\omega + a = a \int i \frac{\omega}{a}$ $\begin{pmatrix} 0 & 1 \end{pmatrix}$ = $= j\omega + a = a \left(\frac{j\omega + 1}{a} \right)$

Bode Plot for $(s + a)$

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Bode diagrams of some standard first order terms

Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

First Order Terms: Comparison of Actual and Asymptotic Behavior

Bode plot for second order systems

- \bullet • System with conjugate zeros when $0 < \xi < 1$ $G(s) = s^2 + 2\xi\omega_n s + \omega_n^2$
- \bullet • System with conjugate poles when $0 < \xi < 1$

$$
G(s) = \frac{1}{s^2 + 2\xi\omega_n s + \omega_n^2}
$$

• For complex conjugate poles and zeros, the slope changes by \pm 40dB/decade

$$
G(j\omega) = \frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2}
$$

- \bullet • For low frequencies $(\omega<\omega_n)$,
- \bullet Log magnitude

 \bullet

$$
20 \log \left| \frac{1}{1 + 2\zeta \left(j\frac{\omega}{\omega_n}\right) + \left(j\frac{\omega}{\omega_n}\right)^2} \right| = -20 \log \sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta \frac{\omega}{\omega_n}\right)^2}
$$
 becomes

0dB (20log 1= 0), hence low frequency asymptote is a straight horizontal line • For high frequencies (ω >> ω_{n}), the log magnitude becomes

$$
-20\log\frac{\omega^2}{\omega_n^2} = -40\log\frac{\omega}{\omega_n}dE
$$

- zHigh frequency asymptote is a straight line with slope of -40dB/decade
- zThe phase angle of the quadratic factor is

$$
\phi = \left| \frac{1}{1 + 2\zeta \left(j \frac{\omega}{\omega_n} \right) + \left(j \frac{\omega}{\omega_n} \right)^2} \right| = -\tan^{-1} \left[\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n} \right)^2} \right]
$$

Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Example - 3:
$$
\frac{G(s) = \frac{(s+3)}{(s+2)(s^2+2s+25)}}{}
$$

 \bullet Second order system is normalized

$$
G(s) = \frac{3}{50} \left[\frac{\left(\frac{s}{3} + 1\right)}{\left(\frac{s}{2} + 1\right)\left(\frac{s^2}{25} + \frac{2}{25}s + 1\right)} \right]
$$

 \bullet Bode magnitude plot starts from 20logK = 24,44dB and continues until the next corner frequency at 2 rad/s

Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Nyquist Plot Analysis

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Presenting frequency response characteristics (Polar plots)

Frequency response of transfer functions can be represented by Polar plots, also called Nyquist plots, as shown in the figure.

$$
M = |G(j\omega)|
$$

$$
\phi = \angle G(j\omega)
$$

General nature of Nyquist curves

Ref: K. Ogata: Modern Control Engineering, 3rd Ed., Prentice Hall, 1999.

Nyquist plots for several standard transfer functions

Nyquist stability criterion

Special case: (G(s)H(s) has neither poles nor zeros on the j ω axis)

If a contour, that encircles the entire right half –plane is mapped through G(s)H(s). Then number of closed loop poles, Z, in right half of s-plane equals the number of open loop poles P, that are in right half of s-plane minus the number of counter-clockwise revolutions N around -1 of the mapping , i.e. Z = P - N.

Example – 1

Open loop poles in the right half of splane are $2,4$, i.e, $P = 2$ Number of encirclements of (-1) , $N = 2$ $Z = P-N = 0$, hence the system is stable.

Example – 2: $G(s) = \frac{n}{s(s+3)(s+5)}$ *K* $G(s) =$ — $S(S + 3)$ $(S$ $=\frac{}{s(s+3)(s+3)}$

- There are no open loop poles in the right half of s-plane, i.e, P = 0.
- Number of encirclements N = 0.
- $Z = P N = 0$, hence the system is stable.
- Value of K which determines the stability is 120.5. It implies if K < 120.5 then system is stable.
- if K > 120.5, critical point is encircled and N = -1. In that case $Z = P N$
	- = 1, and hence the system is unstable

Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Robustness Concepts

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Definitions

The closed loop poles can be determined through characteristic equation $G(s)H(s) = -1 + j0 = 1 \angle 180^\circ$ $1 + G(s)H(s) = 0, s = j\omega$

Phase cross over frequency (ω_{pc} **)**

Frequency at which the phase angle of the transfer function becomes -180^o

 $\angle G(j\omega)H(j\omega) = -180^\circ$

Gain cross over frequency (^ωgc)

Frequency at which the magnitude of the open loop transfer function, is unity, i.e. lG(jω)H(jω)| =1.

These frequencies play an important role in determining the stability margins of the system.

Gain and Phase Margins through Nyquist Plots

System is said to be

- •Stable, if G_M and $\Phi_{\rm M}$ both are positive, i.e. $\omega_{\rm pc}$ > $\omega_{\rm gc}$
- •Marginally stable, if G_M and Φ_M both are zero i.e. $\omega_{\rm pc}$ = $\omega_{\rm gc}$
- •Unstable, if G_M and Φ_{M} both are negative i.e. ω_{pc} ω_{gc}

Gain and Phase Margins through Bode Plots

- \bullet For a stable minimum-phase system, GM/PM indicates how much gain/phase **can be increased** before the system becomes unstable.
	- For an unstable system, GM/PM is indicative of how much gain/phase **must be decreased** to make the system stable.

 \bullet

Frequency Response Characteristics

zConsider a closed loop transfer function of second order system

$$
G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}
$$

z**• The closed loop frequency response**

$$
M = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\zeta \frac{\omega}{\omega_n}\right)^2}}, \qquad \alpha = -\tan^{-1}\frac{2\zeta \frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}
$$

 \bullet

 \bullet The frequency at which the M reaches its peak value is called $\mathsf{resonant}\ \mathsf{frequency}\ (\omega_\mathsf{P})\ .$ $\omega_p = \omega_n \sqrt{1 - 2 \xi^2}$

• At $\omega_{\rm P}$, the slope of the magnitude curve is zero.

Frequency Response Characteristics

 \bullet The maximum value of magnitude is known as the resonant peak (M_p)

$$
M_P = \frac{1}{2\xi\sqrt{1-\xi^2}}
$$

 \bullet **Bandwidth (** ω **_{BW})** is the frequency at which the magnitude response curve is 3dB down from its value at zero frequency .

$$
\omega_{BW} = \omega_n \sqrt{\left(1 - 2\xi^2\right) + \sqrt{4\xi^4 - 4\xi^2 + 2}}
$$

$$
T_s \approx \left(4/\xi\right)/\omega_n
$$

References (Classical Control Systems)

 \bullet

- z **N. S. Nise:** *Control Systems Engineering*, 4th Ed., Wiley, 2004.
- z **K. Ogata:** *Modern Control Engineering*, 3rd Ed., Prentice Hall, 1999.
- z **J. J. Distefano III et al.:** *Feedback and Control Systems*, 2nd Ed., Mc Graw Hill, 1990 (*Schaum's Outline Series*).
- \bullet **B. N. Pamadi:** *Performance, Stability, Dynamics and Control of Airplanes*, AIAA Education Series, 1998.
- \bullet **R. C. Nelson:** *Flight Stability and Automatic Control*, AIAA Education Series, 1998.
	- **E. Kreyszig:** *Advanced Engineering Mathematics*, 8th Ed., Wiley, 2004.

Some Points to Remember

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Some Points to Remember

- \bullet Block diagrams are not circuit diagrams!
- Stability and robustness are necessary of any good control design. After that, one must look for performance (fast response, optimality etc.)
- **High controller gains:**
	- •Good benefits – Robust stability, Good tracking
	- •Bad effects – Control saturation, Noise amplification
- \bullet Inter-coupling of variables, nonlinearities, control and state saturation limits, time delays, quantization errors etc. are always present: Classical SISO approach may not be adequate; Advanced techniques are needed.

