Lecture – 39

Integrator Back-stepping; Linear Quadratic (LQ) Observer

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Philosophy of Nonlinear Control Design Using Lyapunov Theory

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Motivation : $\dot{X} = f(X, U)$

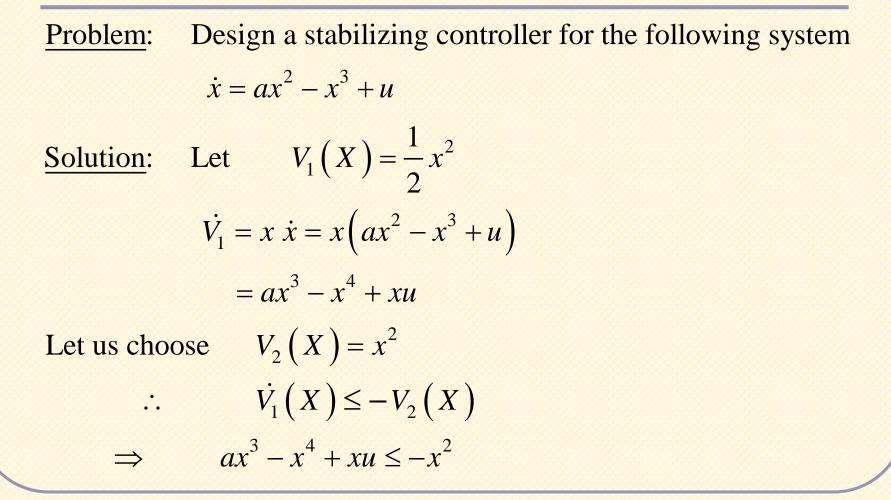
<u>Goal</u>: Design $U = \varphi(X)$ such that

 $\dot{X} = f(X, \varphi(X))$ is asymptotically stable

Design Idea:

* Choose a pdf $V_1(X)$ * Make $\dot{V}_1(X) \leq -V_2(X)$, where $V_2(X) > 0$ (pdf)

Feedback Control Design Using Lyapunov Theory: An Example



$$xu \le -x^2 + x^4 - ax^3$$

 $u = -x + x^3 - ax^2$

Analysis: $\dot{x} = ax^2 - x^3 - x + x^3 - ax^2$

 $\dot{x} = -x$

Advantage: The closed loop system is globally asymptotically stable.

Problem: The benefitial nonlinearity got cancelled.

(which is not desirable)

Let us choose:

$$V_2\left(X\right) = x^2 + x^4$$

Then

$$\dot{V}_{1} \leq -V_{2}(X) \quad \text{leads to:}$$

$$ax^{3} - x^{4} + xu \leq -x^{2} - x^{4}$$

$$ax^{3} + xu \leq -x^{2}$$

$$ax^{2} + u = -x \quad \text{or} \quad \boxed{u = -x - ax^{2}}$$

Closed Loop system: $\dot{x} = ax^2 - x^3 - x - ax^2$ i.e. $\dot{x} = -x^3 - x$

⇒ The destabilizing nonlinearity got cancelled, but the benefitical nonlinearity is retained !

<u>Another Problem</u>: If $V_2(X) = x^2$,

 $\dot{x} = -x$, only if *a* is accurate

If the actual parameter value is \overline{a} , then the feedback loop operates with

$$\dot{x} = -x + \left(\overline{a} - a\right)x^2$$

Can be potentially destabilizing term if $(\bar{a}-a)$ is high

i.e. The global stability reduces to local stability.

This excits robustness issues!

However, if $V_2(X)$ is made "Sufficiently powerful",

then the destabilizing effect can be minimized.

Hence, Lyapunov based designs can be "very robust"

Control Design Using Integrator Back-stepping

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Problem : Design a state feedback asymptotically stabilizing controller for the following system

$$\dot{X} = f(X) + g(X)\xi$$
$$\dot{\xi} = u$$

where $X \in \mathbb{R}^n, \xi \in \mathbb{R}, u \in \mathbb{R}$

Note: $\begin{bmatrix} X \\ \xi \end{bmatrix} \in \mathbb{R}^{n+1}$: State of the system, u: Control input (single input)

Assumptions:

- * $f, g: D \to \mathbb{R}^n$ are smooth * f(0) = 0
- * Considering state ξ as a "control input" of subsystem (1) we assume that \exists a state feedback control law of the from $\xi = \varphi(X), \varphi(0) = 0$. Moreover,

 \exists a Lyapunov function $V_1: D \to \mathbb{R}^+$ such that

 $\dot{V}_{1}(X) = \left(\frac{\partial V_{1}}{\partial X}\right)^{T} \left[f(X) + g(X)\varphi(X)\right] \leq -V_{a}(X), \ \forall X \in D$ where, $V_{a}(X): D \to \mathbb{R}^{+}$ is a pdf function.

An important observation:

When
$$X = 0$$
, $\xi = \varphi(0) = 0$ & $\dot{X} = f(0) = 0$

(i.e. everything is nice)

However, when $\xi \to 0$, $\dot{X} = f(X)$ and hence $X \to 0$

in general. That is the core problem!

:. We need some algebraic manipulation as follows.

$$\frac{\text{Step - 1:}}{\dot{X} = f(X) + g(X)\xi + g(X)\varphi(X) - g(X)\varphi(X)}$$
$$= f(X) + g(X)\varphi(X) + g(X)\left[\xi - \varphi(X)\right]_{z}$$
$$= f(X) + g(X)\varphi(X) + g(X)z$$

By this construction, when $z \to 0$, $\dot{X} = f(X) + g(X)\varphi(X)$ which is asymptotically stable (i.e. $X \to 0$)!

$$\dot{z} = \dot{\xi} - \dot{\varphi}$$

$$=\underbrace{u-\dot{\phi}}_{v}$$

This is backstepping, since $\varphi(X)$ is stepped back by differentiation

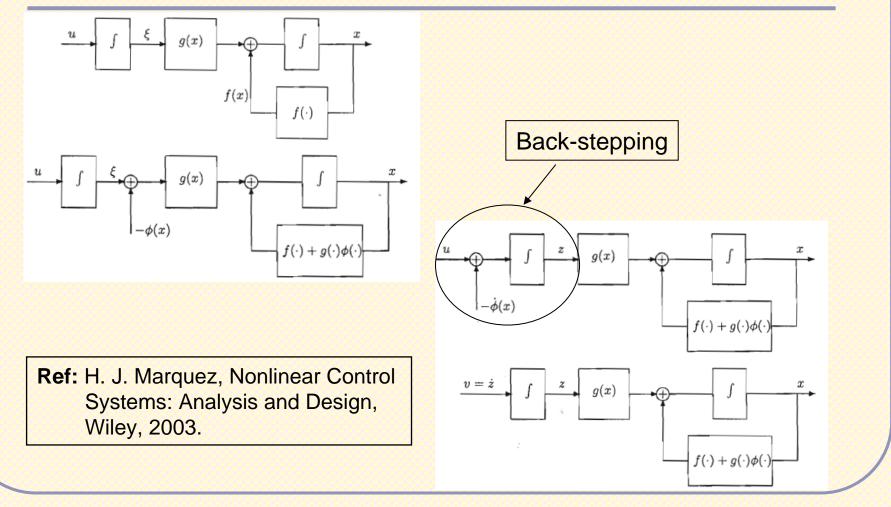
So, we have

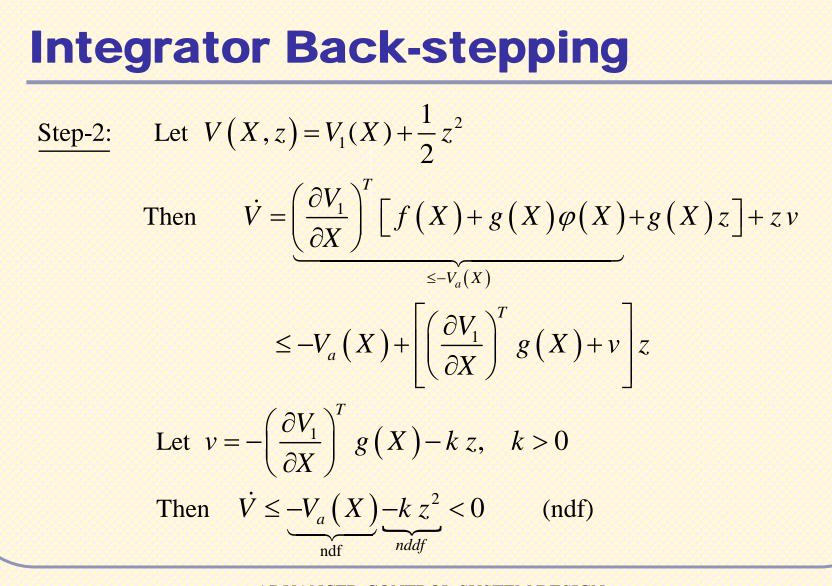
$$\dot{X} = f(X) + g(X)\varphi(X) + g(X)z$$
$$\dot{z} = v$$

This system is equivalent to the original system

Note:
$$\dot{\varphi} = \left(\frac{\partial \varphi}{\partial X}\right)^T \dot{X} = \left(\frac{\partial \varphi}{\partial X}\right)^T \left[f(X) + g(X)\xi\right]$$

Back-stepping: Conceptual Block Diagram





Control Solution:

$$v = u - \dot{\varphi} = -\left(\frac{\partial V_1}{\partial X}\right)^T g(X) - k z$$

$$u = \dot{\varphi} - \left(\frac{\partial V_1}{\partial X}\right)^T g(X) - k\left[\xi - \varphi(X)\right]$$

where, $\dot{\varphi} = \left(\frac{\partial \varphi}{\partial X}\right)^T \left[f(X) + g(X)\xi\right], k > 0$

<u>Note</u>: In the design, there is a need to design $\varphi(X)$ first

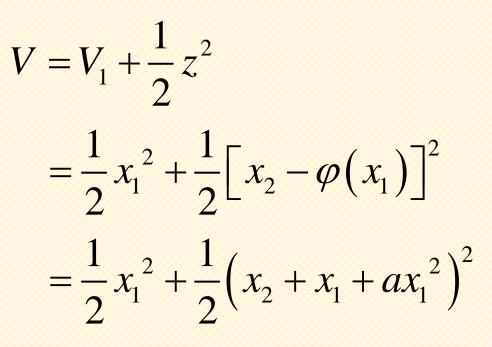
Problem:
$$\dot{x}_1 = ax_1^2 - x_1^3 + x_2$$

 $\dot{x}_2 = u$
Solution:
 $X = x_1, f(x_1) = ax_1^2 - x_1^3, \ \xi = x_2, \ g(x_1) = 1$
To find $\varphi(x_1)$:
 $V_1(x_1) = \frac{1}{2}x_1^2$
 $\dot{V}_1 = x_1\dot{x}_1 = x_1(ax_1^2 - x_1^3 + x_2) \le -\underbrace{V_a(x_1)}_{x_1^2 + x_1^4}$

 $ax_1^3 - x_1^4 + x_1x_2 \le -x_1^2 - x_1^4$ $x_1(ax_1^2 + x_2) \leq -x_1^2$ Let $ax_1^2 + x_2 = -x_1$ $\Rightarrow x_2 = (-ax_1^2 - x_1) \triangleq \varphi(x_1)$ Modified system: $\dot{x}_1 = ax_1^2 - x_1^3 + \varphi(x_1) + [x_2 - \varphi(x_1)]$ $\dot{z} = v \triangleq \left(\dot{x}_2^{\prime u} - \dot{\varphi}(x_1)\right)$ Let $V(x_1, z) = V_1(x_1) + \frac{1}{2}z^2$ $\dot{V} = \dot{V_1} + zv = \left(\frac{\partial V_1}{\partial x_1}\right) \left[ax_1^2 - x_1^3 + \varphi(x_1)\right] + \left(\frac{\partial V_1}{\partial x_1} + v\right) z$

Let
$$v = -\left(\frac{\partial V_1}{\partial x_1}\right) - kz$$
, $k > 0$
 $u - \dot{\varphi} = -x_1 - k\left[x_2 - \varphi(x_1)\right]$
 $u = \frac{\partial \varphi}{\partial x_1} \left(ax_1^2 - x_1^3 + x_2\right) - x_1 - k\left[x_2 - \left(-ax_1^2 - x_1\right)\right]$
 $= \left(-2ax_1 - 1\right) \left(ax_1^2 - x_1^3 + x_2\right) - x_1 - k\left[x_2 + ax_1^2 + x_1\right]$
 $u = -\left(1 + 2ax_1\right) \left(ax_1^2 - x_1^3 + x_2\right) - x_1 - k\left(x_1 + x_2 + ax_1^2\right)$
where $k > 0$

Note: The composite Lyapunov function is:



System Dynamics:

$$\dot{X} = f(X) + g(X)\xi_{1}$$
$$\dot{\xi}_{1} = \xi_{2}$$
$$\dot{\xi}_{2} = u$$

Idea : Successive iteration.

<u>Note</u>: The procedure for n^{th} order system is entirely analogous

<u>Step-1</u>: Consider the subsystem $\dot{X} = f(X) + g(X)\xi_1$

$$\xi_1 = \xi_2$$

Assumption:

 $\xi_1 = \varphi(X)$ is a stabiliting feedback law for $\dot{X} = f(X) + g(X)\xi_1$ and $V_1(X)$ is the corresponding Lyapunov function.

By the result obtained before, we have

$$\begin{aligned} \xi_{2} &= \left(\frac{\partial \varphi(X)}{\partial X}\right)^{T} \underbrace{\left[f(X) + g(X)\xi_{1}\right]}_{\dot{X}} - \left(\frac{\partial V_{1}}{\partial X}\right)^{T} g(X) - k \Big[\xi_{1} - \varphi(X)\Big] \\ &\triangleq \varphi_{1}(X,\xi_{1}) \end{aligned}$$

$$(k > 0)$$

We also have
$$V_2 = V_1 + \frac{1}{2} \left[\xi_1 - \varphi(X) \right]^2$$

Step - 2:

$$\dot{X}_{1} \triangleq \begin{bmatrix} \dot{X} \\ \dot{\xi}_{1} \end{bmatrix} = \begin{bmatrix} f(X) + g(X)\xi_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ g_{1}(X_{1}) \end{bmatrix} \xi_{2}$$
$$\dot{\xi}_{2} = u \qquad \text{where,} \quad X_{1} \triangleq \begin{bmatrix} X \\ \xi_{1} \end{bmatrix}$$

: Using the same idea,

$$u = \left(\frac{\partial \varphi_1}{\partial X_1}\right)^T \left[f_1(X_1) + g_1(X_1)\xi_2\right] - \left(\frac{\partial V_2}{\partial X_1}\right)^T g_1(X_1) - k_1\left[\xi_2 - \varphi_1(X_1)\right], \quad k_1 > 0$$

and $V = V_2 + \frac{1}{2}\left[\xi_2 - \varphi_1(X_1)\right]^2 = V_1 + \frac{1}{2}\left[\xi_1 - \varphi(X)\right]^2 + \frac{1}{2}\left[\xi_2 - \varphi_1(X_1)\right]^2$

Integrator Back-stepping for Strict Feedback Systems

System Dynamics

$$\dot{X} = f(X) + g(X)\xi_{1}$$

$$\dot{\xi}_{1} = f_{1}(X,\xi_{1}) + g_{1}(X,\xi_{1})\xi_{2}$$

$$\dot{\xi}_{2} = f_{2}(X,\xi_{1},\xi_{2}) + g_{2}(X,\xi_{1},\xi_{2})\xi_{3}$$

$$\vdots$$

$$\dot{\xi}_{k} = f_{k}(X,\xi_{1},...,\xi_{k}) + g_{k}(X,\xi_{1},...,\xi_{k})u$$

Strong Assumption:

$$g_1(X,\xi_1), g_2(X,\xi_1,\xi_2), \dots, g_k(X,\xi_1,\dots,\xi_k) \neq 0$$

over the domain of interest $\forall t$

Integrator Back-stepping for Strict Feedback Systems

Special Case:
$$\dot{X} = f(X) + g(X)\xi$$

 $\dot{\xi} = f_a(X,\xi) + g_a(X,\xi)u$

Solution:

Define $\dot{\xi} = v$ and carryout the design for v as before.

Finally
$$f_a(X,\xi) + g_a(X,\xi)u = v$$

i.e.
$$u = \frac{1}{g_a(X,\xi)} \left[v - f_a(X,\xi) \right]$$

<u>Note</u>: By assumption, $g_a(X,\xi) \neq 0 \quad \forall t$

Linear Quadratic (LQ) Observer

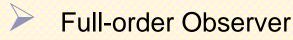
Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Why Observers?

- State feedback control designs need the state information for control computation
- In practice all the state variables are not available for feedback. Possible reasons are:
 - Non-availability of sensors
 - Expensive sensors
 - Quality of some sensors may not acceptable due to noise (its an issue in output feedback control design as well)
- A state observer estimates the state variables based on the measurement of some of the output variables as well as the plant information.

Observer

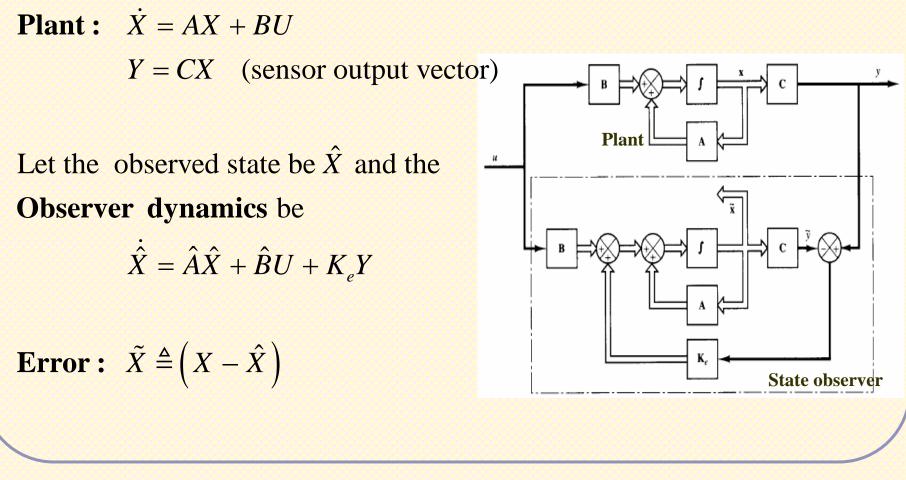
• An observer is a dynamic system whose output is an estimate of the state vector *X*



Reduced-order Observer

Observability condition must be satisfied for designing an observer (this is true for filter design as well)

Observer Design for Linear Systems



Observer Design for Linear Systems Error Dynamics: $\hat{X} = \dot{X} - \dot{X}$ $= \left(AX + BU\right) - \left(\hat{A}\hat{X} + \hat{B}U + K_{e}Y\right)$ Add and Substract AX and substitute Y = CX $\tilde{X} = AX - \hat{A}X + \hat{A}X - \hat{A}\hat{X} + BU - \hat{B}U - K_{e}CX$ $= (A - \hat{A})X + \hat{A}(X - \hat{X}) + (B - \hat{B})U - K_{a}CX$ $= \hat{A}\tilde{X} + \left(A - \hat{A} - K_eC\right)X + \left(B - \hat{B}\right)U$ **Goals:** 1. Make the error dynamics independent of X (\therefore X may be large, even though X may be small) 2. Eliminate the effect of U from eror dynamics

Observer Design for Linear Systems

This can be done by enforcing

 $A - \hat{A} - K_e C = 0$ and $B - \hat{B} = 0$

Necessary and sufficient condition for the existence of K_e :

The system should be "observable".

This results in $\hat{A} = A - K_e C$ $\hat{B} = B$

Observer dynamics:

$$\dot{\hat{X}} = A\hat{X} + BU + K_e \left(Y - C\hat{X}\right)$$

Observer Design: Full Order

- Order of the observer is same as that of the system (i.e. all states are estimated, irrespective of whether they are measured or not).
- Goal: Obtain gain K_e such that the error dynamics are asymptotically stable with sufficient speed of response.

This means that $\hat{A} = A - K_e C$ is Hurwitz (i.e. it has all eigenvalues strictly in the left half plane.

• Note: $\hat{A}^T = A^T - C^T K_e^T$ and the eigen values of both \hat{A} and \hat{A}^T are same!

Comparison of Control and Observer Design Philosophies

Control Design

CL Dynamics

$$\dot{X} = \left(A - BK\right)X$$

Objective

$$X(t) \to 0$$
, as $t \to \infty$

Observer Design

CL Error Dynamics

$$\dot{\tilde{X}} = \hat{A}\tilde{X} = \left(A - K_eC\right)\tilde{X}$$

Objective

$$\tilde{X}(t) \to 0$$
, as $t \to \infty$

• Notice that

$$\lambda (A - K_e C) = \lambda \left[(A - K_e C)^T \right]$$

$$= \lambda (A^T - C^T K_e^T)$$

<u>System</u>	Dual System
$\dot{X} = AX + BU$	$\dot{Z} = A^T Z + C^T V$
Y = CX	$n = B^T Z$
$M = \begin{bmatrix} B AB \cdots A^{n-1}B \end{bmatrix}$ $N = \begin{bmatrix} C^T A^T C^T \cdots A^{T^{n-1}}C^T \end{bmatrix}$	$M = \begin{bmatrix} C^T A^T C^T \cdots A^{T^{n-1}} C^T \end{bmatrix}$ $N = \begin{bmatrix} B AB \cdots A^{n-1}B \end{bmatrix}$
LQR Design	
U = -KX	

ARE Based Observer Design

CL system (control design)	Error Dynamics	
$\dot{X} = (A - BK) X$	$\dot{\tilde{X}} = \left(A - K_e C\right) \tilde{X}$	
$X \to 0$ as $t \to \infty$	$\left(A - K_e C\right)^T = A^T - C^T K_e^T$	
	<u>Analogous</u>	
$K = R^{-1}B^T P, P > 0$	$K_e^T = R^{-1}CP$	Acts like a controller
where,	where,	gain
$PA + A^T P - PBR^{-1}B^T P + Q = 0$	$PA^{T} + AP - PC^{T}R^{-1}CP + Q = 0$	
	Observer Dynamics	
	$\dot{\hat{X}} = A\hat{X} + BU + K_e$	$(Y - C\tilde{X})$

Continuous-time Kalman Filter Design for Linear Time Invariant (LTI) Systems

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Problem Statement

System Dynamics: $\dot{X} = AX + BU + GW$ W(t): Process noise vectorMeasured Output: Y = CX + VV(t): Sensor noise vector

Assumptions:

(i) $X(0) \sim (\tilde{X}_0, P_0)$, $W(t) \sim (0, Q)$ and $V(t) \sim (0, R)$ are "mutually orthogonal" [X(0): initial condition for X](ii) W(t) and V(t) are uncorrelated white noise (iii) $E[W(t) W^T(t+\tau)] = Q \delta(\tau), \quad Q \ge 0 \pmod{1}$ $E[V(t) V^T(t+\tau)] = R \delta(\tau), \quad R > 0 \pmod{1}$

Problem Statement

Objective:

To obtain an estimate of the state vector $\hat{X}(t)$ using the state dynamics as well as a "sequence of measurements" as accurate as possible.

i.e., to make sure that the error $\tilde{X}(t) \triangleq \left[X(t) - \hat{X}(t) \right]$ becomes very small (ideally $\tilde{X}(t) \to 0$) as $t \to \infty$.

Observer/Estimator/Filter Dynamics

$$\dot{\hat{X}} = A\hat{X} + BU + K_e\left(Y - \hat{Y}\right)$$

where (i) $\hat{X} = E(X)$: Estimate of the state X (ii) $\hat{Y} = E(Y)$: Estimate of the output Y = E(CX + V) = E(CX) + E(V) = CE(X) ($\because E(V) = 0$) $= C\hat{X}$ (iii) K_e : Estimator/Filter/Kalman Gain

Problem : How to design K_e ?

Solution: Summary

(i) Initialize $\hat{X}(0)$

(ii) Solve for Riccati matrix P from the Filter ARE: $AP + PA^{T} - PC^{T}R^{-1}CP + GQG^{T} = 0$ (iii) Compute Kalman Gain: $K_{e} = PC^{T}R^{-1}$ (iv) Propagate the Filter dynamics: $\dot{\hat{X}} = A\hat{X} + BU + K_{e}(Y - C\hat{X})$ where Y is the measurement vector

