Lecture – 35

Stability Analysis of Nonlinear Systems Using Lyapunov Theory – III

> *Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore*

\bullet Review of Lyapunov Theorems

• LaSalle's Theorem

\bullet Domain of Attraction

Review of Lyapunov Theorems

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

System Dynamics

 $\dot{X} = f(X)$ $f: D \to \mathbb{R}^n$ (a locally Lipschitz map) $X = f(X)$ $f: D \to \mathbb{R}$

*D***: an open and connected subset of** \mathbb{R}^n

Equilibrium Point (*X e*)

 $\dot{X}_e = f(X_e) = 0$

Stable Equilibrium

 $\left| X(0) - X_e \right| < \delta(\varepsilon) \Rightarrow \left\| X(t) - X_e \right\| < \varepsilon \quad \forall t \geq t_0$ X_e is stable, provided for each $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0$:

Unstable Equilibrium

If the above condition is not satisfied, then the equilibrium point is said to be unstable

Convergent Equilibrium

If
$$
\exists \delta: \|X(0) - X_e\| < \delta \implies \lim_{t \to \infty} X(t) = X_e
$$

Asymptotically Stable

If an equilibrium point is both stable and convergent, then it is said to be asymptotically stable.

Exponentially Stable

$$
\exists \alpha, \lambda > 0: \quad \left\| X(t) - X_e \right\| \le \alpha \left\| X(0) - X_e \right\| e^{-\lambda t} \quad \forall t > 0
$$
\n
$$
\text{whenever} \quad \left\| X(0) - X_e \right\| < \delta
$$

Convention

The equilibrium point $X_e = 0$ =

(without loss of generality)

Theorem – 1 (Stability)

Let $X = 0$ be an equilibrium point of $\dot{X} = f(X)$, $f: D \to \mathbb{R}^n$. (*i*) $V(0) = 0$ $(i) V(X) > 0, \text{ in } D - \{0\}$ Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that:ō $X = f(X), f:D \to \mathbb{R}$

 (iii) $\dot{V}(X) \le 0$, in $D - \{0\}$

Then $X = 0$ is "stable".

Theorem – 2 (Asymptotically stable)

Let $X = 0$ be an equilibrium point of $\dot{X} = f(X)$, $f: D \to \mathbb{R}^n$. (*i*) $V(0) = 0$ $(i) V(X) > 0, \text{ in } D - \{0\}$ (iii) $\dot{V}(X) < 0$, in $D - \{0\}$ Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that: Then $X = 0$ is "asymptotically stable". ö $X = f(X), f:D \to \mathbb{R}$ ٠

Theorem – 3 (Globally asymptotically stable)

Let $X = 0$ be an equilibrium point of $\dot{X} = f(X)$, $f: D \to \mathbb{R}^n$. (*i*) $V(0) = 0$ $(i) V(X) > 0, \text{ in } D - \{0\}$ (iii) $V(X)$ is "radially unbounded" (iv) $\dot{V}(X) < 0$, in $D - \{0\}$ Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that:Then $X = 0$ is "globally asymptotically stable". ó $X = f(X), f:D \to \mathbb{R}$ ٠

Theorem – 3 (Exponentially stable)

In addition to it, suppose \exists constants k_1, k_2, k_3, p : Suppose all conditions for asymptotic stability are satisfied.

$$
(i) \quad k_1 \|X\|^p \le V(X) \le k_2 \|X\|^p
$$

$$
(ii) \ \dot{V}(X) \leq -k_3 \|X\|^p
$$

Then the origin $X = 0$ is "exponentially stable".

Moreover, if these conditions hold globally, then the

 $origin X = 0$ is "globally exponentially stable".

Analysis of Linear Time Invariant System

System dynamics: $X = AX$, $X = AX$, $A \in \mathbb{R}^{n \times n}$ $\dot{X} = AX$, $A \in \mathbb{R}^{n \times n}$

 \blacksquare yapunov function: $V(X) = X^TPX,$ $P>0$ (pdf)

 \overline{D} **Derivative analysis:** $\overline{V} = \overline{X}^T P X + \overline{X}^T P \overline{X}$ $=X^{T}\left(A^{T}P+PA\right)X$ $X^T A^T P X + X^T P A X$ $\dot{V} = \dot{\mathbf{Y}}^T \, \boldsymbol{P} \mathbf{Y} \perp \mathbf{Y}^T \, \boldsymbol{P} \dot{\mathbf{Y}}$

Analysis of Linear Time Invariant System

 $\boldsymbol{Y} = -\boldsymbol{X}^T \boldsymbol{Q} \boldsymbol{X} \quad (\boldsymbol{Q} > 0)$

By comparing
$$
X^T(A^T P + P A)X = -X^T Q X
$$

For a non-trivial solution

$$
P A + A^T P + Q = 0
$$

(Lyapunov Equation)

Analysis of Linear Time Invariant Systems

- \bullet Choose an arbitrary symmetric positive definite matrix Q $(Q=I)$ $=I)$
- \bullet • Solve for the matrix P form the *Lyapunov equation* and verify whether it is positive definite
- \bullet • Result: If P is positive definite, then $V(X)$ and hence the origin is "asymptotically stable". $\dot{V}(X) < 0$

Lyapunov's Indirect Theorem

Let the linearized system about $X = 0$ be $\Delta \dot{X} = A(\Delta X)$. The theorem says that if all the eigenvalues λ_i $(i = 1, ..., n)$ of the matrix A satisfy $\text{Re}(\lambda_i)$ < 0 (i.e. the linearized system is exponentially stable), then for t he nonlinear system the origin is locally exponentially stable.

Instability theorem

Consider the autonomous dynamical system and assume $X=0$ is an equilibrium point. Let $V: D \rightarrow \mathbb{R}$ have the following properties:

 $(i) V(0) = 0$

 (iii) $\exists X_0 \in \mathbb{R}^n$, arbitrarily close to $X = 0$, such that $V(X_0) > 0$ $U = \{ X \in D : ||X|| \le \varepsilon \text{ and } V(X) > 0 \}$ (*iii*) $V > 0$ $\forall X \in U$, where the set U is defined as follows ٠

Under these conditions, $\,X{=}0\,$ is unstable

Construction of Lyapunov Functions

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Variable Gradient Method:

Select a $\nabla V = \frac{\partial V}{\partial X} = g(X)$ that contains some adjustable parameters Then $dV(X)$ $\left(\tilde{X}\right)$ $V(X)-V(0)=\int g(\tilde X)$ 0 $X=0$ 0 V ^T *X X I N X I N T* $X=0$ *X X X* $dV(X) = \left| \frac{\partial V}{\partial X} \right| dX$ *V* $\int_{\tilde{X}=0}$ $dV(X) = \int_{\tilde{X}=0}$ $\left(\frac{\partial V}{\partial \tilde{X}}\right) dX$ $V(X) - V(0) = \int g(X) dX$. . $\tilde{X} = \int \frac{\partial V}{\partial x} d\tilde{X}$ $-V(0) = \int g(\tilde{X}) d\tilde{X}$ = ⁼= $\nabla V =$ * Select a $\nabla V = \frac{\partial V}{\partial X}$ * Then $dV(X) = \left(\frac{\partial V}{\partial X}\right)^2$ $=\int\limits_{\tilde{y}}^{x}\left(\frac{\partial V}{\partial \tilde{X}}\right)$ $\int dV(\tilde{X}) = \int$ ∫ Note: To recover a unique V, $\nabla V = g(X)$ must satisfy the "Curl Condition": $\frac{\partial g_i}{\partial x_i} = \frac{\partial g_j}{\partial y_i}$ j \cdots *i i.e.* $\frac{\partial g_i}{\partial x_i} = \frac{\partial g}{\partial x}$ $\frac{\partial g_i}{\partial x_i} = \frac{\partial g_i}{\partial x_i}$

However, note that the intergal value depends on the initial and final states (not on the path followed). Hence, integration can be conveniently done along each of the co-ordinate axes in turn; i.e.

Variable Gradient Method:

$$
V(X) = \int_{0}^{x_{1}} g_{1}(\tilde{x}_{1}, 0, \dots, 0) d\tilde{x}_{1}
$$

+
$$
\int_{0}^{x_{2}} g_{2}(x_{1}, \tilde{x}_{2}, 0, \dots, 0) d\tilde{x}_{2}
$$

+
$$
\int_{0}^{x_{n}} g_{n}(x_{1}, \dots, x_{n-1}, \tilde{x}_{n}) d\tilde{x}_{n}
$$

Note: The free parameter of $g(X)$ are constrained to satisfy the symmetric condition, which is satisfied by all gradients of a scalar functions.

Variable Gradient Method:

Theorem: A function $g(X)$ is the gradient of a scalar

function $V(X)$ if and only if the matrix $\left|\frac{\partial g(X)}{\partial X}\right|$ $V(X)$ if and only if the matrix $\frac{\partial g(X)}{\partial X}$ $\left[\frac{\partial g(X)}{\partial X}\right]$ $\left[\frac{\partial g(A)}{\partial X}\right]$

is symmetric; where

$$
\left[\frac{\partial g(X)}{\partial X}\right] \triangleq \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \end{bmatrix}
$$

Krasovskii's Method

Let us consider the system $\dot{X} = f(X)$ \mathbf{r}

Let $A(X) \triangleq \left| \frac{\partial f}{\partial X} \right|$: Jacobian matrix \triangle ∂ $\begin{bmatrix} \frac{\partial f}{\partial X} \end{bmatrix}$

Theorem :

If the matrix $F(X) \triangleq A(X) + A^T(X)$ is <u>ndf</u> for all $X \in D$ $(0 \in D)$, then the equilibrium point is locally asymptotically stable and a Lyapunov function for the system is

 $V(X) = f^T(X) f(X)$

Note: If $D = \mathbb{R}^n$ and $V(X)$ is radially unbounded,

then the equilibrium point is globally asymptotically stable.

Krasovskii's Method

$$
\dot{V}(X) = f^T \dot{f} + \dot{f}^T f
$$
\n
$$
= f^T \left[\frac{\partial f}{\partial X} \right]^T \dot{X} + \dot{X}^T \left[\frac{\partial f}{\partial X} \right] f
$$
\n
$$
= f^T (A^T + A) f
$$
\n
$$
= f^T F f
$$

Hence, if $F(X)$ is negative definite, $\dot{V}(X)$ is ndf.

So, by Lyapunov's theorem, $X = 0$ is asymptotically stable.

Generalized Krasovskii's Theorem

: **Theorem**

Let
$$
A(X) \triangleq \left[\frac{\partial f(X)}{\partial X}\right]
$$

 $F(X) = A^T P + P A + Q$ A sufficent condition for the origin to be asymptotically stable is that \exists two pdf matrices P and Q: $\forall X \neq 0$, the matrix

is negative semi-definite in some neighbourhood D of the origin.

In addition, if $D = \mathbb{R}^n$ and $V(X) \triangleq f^T(X) P f(X)$ is radially unbounded, then the system is globally asymptotically stable.

Generalized Krasovskii'sTheorem

Proof:
$$
V(X) = f^{T}(X)Pf(X)
$$

\n
$$
\dot{V}(X) = [f^{T}P \dot{f} + \dot{f}^{T}P f]
$$
\n
$$
= f^{T}P \left(\frac{\partial f}{\partial X}\right)^{T} \dot{X} + \left[\left(\frac{\partial f}{\partial X}\right)^{T} \dot{X}\right]^{T}Pf
$$
\n
$$
= f^{T}PA^{T}f + f^{T}AP f
$$
\n
$$
= f^{T}\left(PA^{T} + AP + Q - Q\right)f
$$
\n
$$
= \underbrace{f^{T}\left(PA^{T} + AP + Q\right)f}_{n\delta f} - \underbrace{f^{T}Qf}_{n\delta f}
$$
\n
$$
< 0 \text{ (ndf)} \text{ Hence, the result.}
$$

Invariant and Limit Sets

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Invariant Set

system $\dot{X} = f(X)$ if: A set M is said to be an "invariant set" with respect to the \mathbf{Y}

$$
X(0) \in M \Big| \Rightarrow \Big| X(t) \in M , \forall t > 0
$$

Examples:

(i) An equilibrium point $(M = X_e)$

(ii) Any trajectary of an autonomous system $\big(M = X(t)\big)$

Limit Set

Definition:

Let $X(t)$ be a trajectory of the dynamical system $\dot{X} = f(X)$. Then the set N is called the limit set (or positive limit set) of $X(t)$ if for any $p \in N$, \exists a sequence of times $\{t_n\} \in [0,\infty]$ \mathbf{v} such that $X(t_n) \to p$ as $t_n \to \infty$. Note: Roughly, the limit set N of $X(t)$ is whatever $X(t)$ tends to in the limit.

Limit Set

Example:

 (i) An asymptotically stable equilibrium point is the limit set of any solution starting from a close neighbourhood of the equilibrium point.

(ii) A stable limit cycle is the limit set for any solution starting sufficiently close to it

LaSalle's Theorem

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

A Useful Theorem(Subset of LaSalle's Theorem)

Theorem : The equilibrium point $X = 0$ of the autonomous system $\dot{X} = f(X)$ $=$ 0 of the autonomous system $\Lambda =$

is asymptotically stable if:

(i)
$$
V(X) > 0
$$
 (pdf) $\forall X \in D$ $[0 \in D]$

(ii) $\dot{V}(X) \le 0$ (nsdf) in a bounde ٠ $W(X) \leq 0$ (nsdf) in a bounded region $R \subset D$

 $V(X)$ does not vanish along any trajectory in R ٠

Example 1 other than the null solution $X=0$

Morever,

If the above conditions hold good for $R = \mathbb{R}^n$ and $V(X)$ is radially unbounded,

then $X = 0$ is globally asymptotically stable.

Example

 $(x_1 + x_2)^2$ $Solution:$ Let $V(X) = \alpha x^2 + x^2$, $\alpha > 0$ $(X) = \left| \frac{\partial V}{\partial X} \right| f(X)$ $x_1 = x_2$ $x_2 = -x_2 - \alpha x_1 - (x_1 + x_2) x_2$ Example: $= 2\alpha x$ V ^T $V(X) = \left[\frac{\partial Y}{\partial X}\right] f(X)$ c $\chi_{1} =$ c $\dot{x}_2 = -x_2 - \alpha x_1 - (x_1 +$ $=\left(\frac{\partial V}{\partial \mathbf{V}}\right)$ ∂X $=[2\alpha x_1 \ 2x_2]$ $\Big|_{x_2}=\alpha x_1 - (x_1 + x_2)$ $= 2\alpha x_1 x_2 - 2x_2^2 - 2\alpha x_1 x_2 - 2(x_1 + x_2)^2 x_2^2$ $1 + 2$ 2 2 α_1 α_1 α_2 α_2 $2x_2$ *x x* $\begin{bmatrix} x_2 \\ -x_2 - \alpha x_1 - (x_1 + x_2)^2 x_2 \end{bmatrix}$

Example

$$
\dot{V}(X) = -2x_2^2 \left[1 + (x_1 + x_2)^2 \right]
$$
\n
$$
\leq 0 \quad \text{(nsdf)}
$$
\nNow

\n
$$
\dot{V}(X) = 0 \quad \forall t
$$
\n
$$
\Leftrightarrow x_2(t) = 0 \quad \forall t
$$
\n
$$
\Rightarrow \quad \dot{x}_2 = 0
$$
\n
$$
-x_2 - \alpha x_1 - (x_1 + x_2)^2 x_2 = 0 \quad \text{(However, } x_2 = 0)
$$
\n
$$
\therefore \quad x_1 = 0 \qquad \text{i.e. } X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Example

Here we have :

(i) $\dot{V}(X)$ does not vanish along any trajectory (iii) $V(X)$ is radially unbounded, α other than $X = 0$ (ii) $V \leq 0$ in \mathbb{R}^n ó ė \leq 0 in \mathbb{R}

Hence, the origin is **Globally asymptotically stable**.

LaSalle's Theorem

Let $V: D \to \mathbb{R}$ be a continuously differentiable (not necessarily pdf) function and (i) $M \subset D$ be a compact set, which is

invariant with respect to the solution of $\dot{X} = f(X)$ $\mathbf{z} =$

(ii)
$$
\dot{V} \leq 0
$$
 in M

$$
(iii) E = \{ X : X \in M \text{ and } \dot{V}(X) = 0 \}
$$

i.e. E is the set of all points of $M: V = 0$ *(iv) N is the largest invariant set in E* ϵ

Then Every solution starting in M approaches N as $t \to \infty$.

Lasalle's Theorem

Remarks:

(i) $V(X)$ is required only to be continuously differentiable It need not be positive definite.

(ii) LaSalle's Theorem applies not only to equilibrium points, but also to more general d ynamic

behaviours such as limit cycles.

(iii) The earlier theorems (on asymptotic stability) can be derived as a corollary of this theorem.

 $\dot{x}_1 = x_2 + x_1 \left(\beta^2 - x_1^2 - x_2^2 \right)$ $\dot{x}_2 = -x_1 + x_2(\beta^2 - x_1^2 - x_2^2), \quad \beta > 0$ Morever, $\frac{a}{dt}(x_1^2 + x_2^2 - \beta^2)$ 1 1 2 \sim 2 Example: Solution: $0 \mid x_1 \mid 0$ $0 \mid x_{2} \mid 0$ x_1 \cup x_2 $x₀$ $y₁$ $x₂$ *d dt*٠ $\dot{x}_1 = x_2 + x_1(\beta^2 - x_1^2 -$ ٠ $\dot{x}_2 = -x_1 + x_2(\beta^2 - x_1^2 - x_2^2), \quad \beta >$ ċ ٠ $+x_2^2-\beta$ $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $= 2x_1 \left[x_2 + x_1 \left(\beta^2 - x_1^2 - x_2^2 \right) \right]$ $+ 2x_2 \left[-x_1 + x_2 \left(\beta^2 - x_1^2 - x_2^2 \right) \right]$ $= 2x_1\dot{x}_1 + 2x_2\dot{x}_2$ $= 2x_1\dot{x}_1 + 2x_2\dot{x}_2$ $[x_2 + x_1(\beta^2 - x_1^2 - x_2^2)]$

$$
= 2(x_{1}^{2} + x_{2}^{2}) (\beta^{2} - x_{1}^{2} - x_{2}^{2})
$$

$$
= 0 \t\t \text{if} \t x_1^2 + x_2^2 = \beta^2
$$

∴ The set of points defined by x^2 ₁ + x^2 ₂ = β^2

this circle at t₀ stays on the circle $\forall t \geq t_0$ is an invariant set ; i.e any trajectory starting on

The trajectories on this invariant set are the solution of :

$$
\dot{X} = f(X)\Big|_{\left(x_1^2 + x_2^2 = \beta^2\right)}
$$
\n
$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix} \implies \text{A clock-wise motion}
$$

x2

x1

Let
$$
V(X) = \frac{1}{4} (x_1^2 + x_2^2 - \beta^2)^2
$$
 [Note: $V(X) \ge 0$ in \mathbb{R}^2]
\n
$$
\dot{V}(X) = \left[\frac{\partial V}{\partial x_1} \frac{\partial V}{\partial x_2} \right] \left[f_1(X) \right]
$$
\n
$$
= (x_1^2 + x_2^2 - \beta^2) [x_1 \ x_2] \left[\frac{x_2 + x_1(\beta^2 - x_1^2 - x_2^2)}{-x_1 + x_2(\beta^2 - x_1^2 - x_2^2)} \right]
$$
\n
$$
= (x_1^2 + x_2^2 - \beta^2) (x_1^2 + x_2^2) (\beta^2 - x_1^2 - x_2^2)
$$
\n
$$
= -(x_1^2 + x_2^2) (x_1^2 + x_2^2 - \beta^2)^2
$$
\n
$$
\le 0 \qquad \text{Note: } \dot{V}(X) = -4(x_1^2 + x_2^2) V(X)
$$

Moreover $\dot{V}(X) = 0$ ٠ $\langle \mathbf{X} |$ =

⇒ Either
$$
(x_1^2 + x_2^2) = 0
$$
 or $x_1^2 + x_2^2 =$

i.e Either

 origin $Here, X = 0$ (i.e it is an equilibrium point) \sim

$$
(x_1^2 + x_2^2) = 0
$$
 or $x_1^2 + x_2^2 = \beta^2$

or
$$
x_1^2 + x_2^2 = \beta^2
$$

 Circle of radius *β* It is an invariant set (i.e it is a limit cycle)

LaSalle's Theorem :

 $M = \left\{ X \in \mathbb{R}^2 : V(X) \leq c \right\}$ Step-1: For any $c > \beta$, let us define

In this set, $\dot{V}(X) \le 0$ (and this is true $\forall X \in M$) ∴ *M* is an invariant set ٠

By construction, M is closed and bounded

Step-2 [To find
$$
E = \{X \in M : V(X) = 0\}
$$
]

It is already shown that

$$
E = (0,0) \cup \left\{ X \in \mathbb{R}^2 : x_{1}^{2} + x_{2}^{2} = \beta^{2} \right\}
$$

Step-3 $\left[$ To find N: The largest invariant set in $E\right]$

E Since both the subsets that constitute E are invariant,

$$
N=E
$$

Hence, By Lasalle's Theorem, every motion starting

in *M* converges either to the origin or to the limit cycle, $x_1^2 + x_2^2 = \beta^2$

Stability Analysis (of limit cycle)

Further analysis:

Note that
$$
V(X) = \frac{1}{4} (x_1^2 + x_2^2 - \beta^2)^2
$$
 is a measure of
distance of a point $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to the limit cycle, since:
 $V(X) = 0$, if $x_1^2 + x_2^2 = \beta^2$
Also $V(X) = \left(\frac{\beta^4}{4}\right)$, if $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Selecting: (i) β : $\beta < (\beta^4/4)$, (i.e. $\beta > \sqrt[3]{4}$) (ii) $c: \beta < c < (\beta^4 / 4)$ (iii) $M = \{ X \in \mathbb{R}^2 : V(X) \le c \}$ (this excludes origin)

Then applying LaSalle's theorem, it follows that

any trajectory in M will converge to the limit cycle

The limit cycle is Convergent / Attractive. ⇒

Corollary:

Letting $\varepsilon \to 0^+$, this also shows that the origin is unstable!

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

<u>Definition</u>: Let $\psi(X,t)$ be trajectories of $\dot{X} = f(X)$ with initial $D_A \triangleq \{ X \in D : \psi(X,t) \to X_e \text{ as } t \to \infty \}$ condition X at $t = 0$. Then the Domain of attraction is defined as

Philosophy : Around any asymptotically s table equilibrium

point, there is a domain of attraction.

Question : Can we estimate a domain of attraction ?

Ans: Yes!

where, a, b, c, d need to be choosen "appropriately".

$$
\dot{V}(X) = \left[\frac{\partial V}{\partial x_1} \frac{\partial V}{\partial x_2}\right] \left[\begin{array}{c} 3x_2 \\ -5x_1 + x_1^3 - 2x_2 \end{array}\right]
$$

= $(3c - 4d)x_2^2 + (2d - 12b)x_1^3x_2$
+ $(6a - 10d - 2c)x_1x_2 + cx_1^4 - 5c x_1^2$

Choose:

$$
\begin{array}{c} 2d - 12b = 0 \\ 6a - 10d - 2c = 0 \end{array} \Rightarrow (a = 12, b = 1, c = d = 6) \text{ (one choice)}
$$

With this choice,

 $V(X) = 3(x_1 + 2x_2)^2 + 9x_1^2 + 3x_2^2 - x_1^4$ (locally *pdf*) $\dot{V}(X) = -6x_2^2 - 30x_1^2 + 6x_1^4$ *(locally ndf)* ٠ \angle (X) = $-6x_2 - 30x_1 +$

Hence, the system is locally asymptotically stable.

Note: Here, $V(X) > 0$ and $V(X)$ é $X \in \mathbb{R}^2$: $-1.6 < x_1 < 1.6$ 1 < 0 as long as $-1.6 < x_1 < 1.6$ 2We may be tempted to conclude that $D = \{X \in \mathbb{R}^2 : -1.6 \le x_1 \le 1.6\}$ is a region of attraction .

Surprise : The conclusion is incorrect!

This is because *D* is NOT an invariant set

Theorem: Domain of Attraction

Theorem:

Let (i) X_e be an equilibrium point of the system $\dot{X} = f(X)$

(ii) $V(X): D \to \mathbb{R}$ be a continuously differentiable function

(iii) $M \subset D$ be a compact set containing X_e such that "M is invariant

with respect to the solution of the system"

(iv) \dot{V} is such that $\dot{V} < 0 \ \forall X \neq X_e$ in M

$$
= 0 \quad \text{if} \quad X = X_e
$$

Under these assumption, M is a subset of the domain of attraction,

i.e. *M* is an estimate of domain of attraction.

[Proof: In LaSalle's theorem, $E = \{X : X \in M \mid \& \mathbf{V} = 0\} = X_e$. Hence the result!

Example….Contd.

$$
V(X) = 12x_1^2 - x_1^4 + 6x_1x_2 + 6x_2^2 \qquad V(0) = 0
$$

$$
V(0) = 0
$$

$$
\dot{V}(0) = 0
$$

$$
\dot{V}(0) = 0
$$

$$
\dot{V}(X) = -6x_2^2 - 30x_1^2 + 6x_1^4
$$

We already know that

$$
V(X) > 0 \text{ and } \dot{V}(X) < 0 \text{ happens in}
$$
\n
$$
D = \left\{ X \in \mathbb{R}^2 : -1.6 < x_1 < 1.6 \right\}
$$

Let us find the minimum of $V(X)$ along the very edge of this set (to restrict this set further). Then

$$
V\Big|_{x_1=1.6} = 24.16 + 9.6x_2 + 6x_2
$$

$$
\frac{\partial}{\partial x_2} \Big(V\Big|_{x_1=1.6} \Big) = 9.6 + 12x_2 = 0
$$

$$
\Rightarrow x_2 = \frac{-9.6}{12} = -0.8
$$

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

2

Similarly

$$
\frac{\partial}{\partial x_2} \left(V\Big|_{x_1=-1.6}\right) = \frac{\partial}{\partial x_2} \left(24.16 - 9.6x_2 + 6x_2^2\right)
$$

$$
= -9.6 + 12x_2 = 0
$$

$$
\Rightarrow x_2 = 0.8
$$
Also
$$
\frac{\partial^2}{\partial x_2} \left(V\Big|_{x_1=\pm 1.6}\right) = 12 > 0
$$

$$
\therefore V(X) \text{ has local minima when } \left[\frac{x_1}{x_2}\right] = \left[\begin{array}{c} 1.6\\ -0.8 \end{array}\right], \left[\begin{array}{c} -1.6\\ 0.8 \end{array}\right]
$$

Moreover, $V(1.6, -0.8) = V(-1.6, -0.8) = 20.32$ [Else, we need to choose the minimum of the two minimums.] $\left\{ X \in D : V(X) \leq 20.32 - \varepsilon \right\}$ (i.e. both the minimums are equal) $\therefore M = \{X \in D : V(X) \leq 20.32 - \varepsilon \} \subset D$ is an invariant set, and hence, M is an estimate of the domain of attraction

Hence $X(t) \rightarrow 0$ as long as it starts in M Note: As long as $\varepsilon > 0$, the local minimums are excluded.

An Interesting Result

Lemma

If a real function $V(t)$ satisfies the in equality $\dot{V}(t) \leq -\alpha V(t)$, $\alpha \in$ Then $V(t) \leq e^{-\alpha t} V(0)$ Let $Z(t) = \dot{V} + \alpha V$ (*t*) $(\text{Note: } Z(t) \le 0)$ Proof: $\mathbf{H} = \mathbf{Z}(t)$ (Note: $\mathbf{Z}(t) \leq 0$ $V(t) \leq e^{-\alpha t} V$ $\leq e^{-\alpha}$ $V(t) \leq -\alpha V(t)$ $\alpha \in \mathbb{R}$ ō ė

An Interesting Result

Let us consider $Z(t)$ as an "external input"

to this "linear system"

Then

∴

$$
V(t) = e^{-\alpha t} V(0) + \int_{0}^{t} e^{-\alpha(t-\tau)} \cdot 1 \cdot Z(\tau) d\tau
$$

$$
V(t) \le e^{-\alpha t} V(0)
$$

References

- z H. J. Marquez: *Nonlinear Control Systems Analysis and Design*, Wiley, 2003.
- z J-J. E. Slotine and W. Li: *Applied Nonlinear Control*, Prentice Hall, 1991.
- \bullet H. K. Khalil: *Nonlinear Systems*, Prentice Hall, 1996.

