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Definitions

System Dynamics

Equilibrium Point

( ) :  (a locally Lipschitz map)

: an open and connected subset of 

n

n

X f X f D

D

= →� R

R

( ) 0e eX f X= =�

( )eX
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Definitions

Stable Equilibrium

Unstable Equilibrium
If the above condition is not satisfied, then the 
equilibrium point is said to be unstable

0

is stable, provided for each 0, ( ) 0 :
(0) ( ) ( )

e

e e

X
X X X t X t t

ε δ ε
δ ε ε

> ∃ >

− < ⇒ − < ∀ ≥



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

6

Definitions
Convergent Equilibrium

Asymptotically Stable
If an equilibrium point is both stable and convergent, 
then it is said to be asymptotically stable.

( ) ( )If  : 0 lime et
X X X t Xδ δ

→∞
∃ − < ⇒ =
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Definitions
Exponentially Stable

Convention

(without loss of generality)

( ) ( )
( )

, 0 : 0 0

whenever 0

t
e e

e

X t X X X e t

X X

λα λ α

δ

−∃ > − ≤ − ∀ >

− <

The equilibrium point  0eX =
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Lyapunov Stability Theorems
Theorem – 1 (Stability)

( )

( )
( )
( )

Let 0 be an equilibrium point of  , : .
Let :  be a continuously differentiable function 
such that:
( ) 0 0

( ) 0, {0}

( ) 0, {0}
Then  0  is "stable".

nX X f X f D
V D

i V

ii V X in D

iii V X in D
X

= = →

→

=

> −

≤ −

=

�

�

R
R
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Lyapunov Stability Theorems
Theorem – 2 (Asymptotically stable)

( )

( )
( )
( )

Let 0 be an equilibrium point of  , : .
Let :  be a continuously differentiable function 
such that:
( ) 0 0

( ) 0, {0}

( ) 0, {0}
Then  0  is "asymptotically stable".

nX X f X f D
V D

i V

ii V X in D

iii V X in D
X

= = →

→

=

> −

< −

=

�

�

R
R



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

10

Lyapunov Stability Theorems
Theorem – 3 (Globally asymptotically stable)

( )

( )
( )
( )
( )

Let 0 be an equilibrium point of  , : .
Let :  be a continuously differentiable function 
such that:
( ) 0 0

( ) 0, {0}

( )  is "radially unbounded"

( ) 0, {0}
Then  0  is "glo

nX X f X f D
V D

i V

ii V X in D

iii V X

iv V X in D
X

= = →

→

=

> −

< −

=

�

�

R
R

bally asymptotically stable".
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Lyapunov Stability Theorems
Theorem – 3 (Exponentially stable)

( )
( )

1 2 3

1 2

3

Suppose all conditions for asymptotic stability are satisfied.
In addition to it, suppose  constants , , , :

( )

( )
Then the origin  0  is "exponentially stable".
Moreover, if

p p

p

k k k p

i k X V X k X

ii V X k X
X

∃

≤ ≤

≤ −

=

�

 these conditions hold globally, then the 
origin  0 is "globally exponentially stable".X =
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Analysis of Linear Time 
Invariant System

System dynamics:

Lyapunov function:

Derivative analysis:

, n nX AX A ×= ∈� R

( )

T T

T T T

T T

V X PX X PX
X A PX X PAX

X A P PA X

= +

= +

= +

� � �

( ) ( ), 0 pdfTV X X PX P= >
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Analysis of Linear Time 
Invariant System

For stability, we aim for

By comparing

For a non-trivial solution

( )T T TX A P PA X X QX+ = −

( )0TV X QX Q= − >�

0TPA A P Q+ + =

(Lyapunov Equation)
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Analysis of Linear Time 
Invariant Systems

Choose an arbitrary symmetric positive 
definite matrix 

Solve for the matrix    form the Lyapunov 
equation and verify whether it is positive 
definite

Result: If       is positive definite, then         
and hence the origin is “asymptotically 
stable”. 

( )Q Q I=

P

P ( ) 0V X <�
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Lyapunov’s Indirect Theorem

( )
( )

( )

Let the linearized system about 0   be  .

The theorem says that if all the eigenvalues 1, ,  

of the matrix  satisfy Re 0 (i.e. the linearized system
is exponentially stable), then for t

i

i

X X A X

i n

A

λ

λ

= Δ = Δ

=

<

�

…

he nonlinear system the
origin is locally exponentially stable.
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Instability theorem
Consider the autonomous dynamical system and assume 

is an equilibrium point. Let have the
following properties:

Under these conditions,            is unstable

( )

( )

0 0

( ) (0) 0
( ) ,arbitrarily close to 0, such that 0

( ) 0 , where the set is defined as follows
{ :  and 0}

n

i V
ii X X V X

iii V X U U
U X D X V Xε

=

∃ ∈ = >

> ∀ ∈

= ∈ ≤ >

�
R

0X=

0X=

:V D →R
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Variable Gradient Method:
( )

( )

( )

( ) ( ) ( )
0 0

0

Select a   that contains some adjustable parameters

However, note that the intergal 

  

  Then    

          

      0

T

TX X

X X

X

X

V g
V X
X

VdV X dX
X

VdV X dX
X

V X V g X dX

� �

�

� �
�

� �

= =

=

∇ =
∂∗ =
∂

⎛ ⎞∂ ⎟⎜∗ = ⎟⎜ ⎟⎟⎜⎝ ⎠∂
⎛ ⎞∂ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠∂

− =

∫ ∫

∫
value depends on the initial and final 

states (not on the path followed). Hence, integration can be conveniently
done along each of the co-ordinate axes in turn; i.e.

Note:
To recover a unique ,

( ) must satisfy 
the "Curl Condition":

. . ji

j i

V
V g X

ggi e
x x

∇ =

∂∂
=

∂ ∂
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Variable Gradient Method:

( )

( )

1

2

1 1 1
0

2 1 2 2
0

1 1
0

0,......, 0

0,......, 0

,......, ,

Note  The free parameter of  are constrained to 

  satisfy the symmetric condition, which is satisfied
  

( , )

+  ( , , )

+  ( )

:

n

x

x

x

n n n nx x

V X g x dx

g x x dx

g x dx

g X

�

� �

� �

#

�−

= ∫

∫

∫

by all gradients of a scalar functions. 
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Variable Gradient Method:
( )

( ) ( )

( )

1 1

1

1

Theorem: A function  is the gradient of a scalar 

            function  if and only if  the matrix 

            is symmetric; where

             
n

n n

g X

g X
V X

X

g g
x x

g X
X

g g
x x

…

� # % #

"

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

∂ ∂
∂ ∂⎡ ⎤∂⎢ ⎥

⎢ ⎥∂⎣ ⎦ ∂ ∂
∂ ∂ n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
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Krasovskii’s Method 
( )

( )

( ) ( ) ( ) ( )

Let us consider the system    

Let   :  Jacobian matrix

If the matrix   is ndf for all     0

then the equilibrium point is locally asymptotically stable and a 

 

,T

X f X

f
A X

X

F X A X A X X D D

Theorem :

�

�

�

=

∂
∂

∈ ∈

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

+

( ) ( ) ( )
( )

Lyapunov function for the system is 

                             

Note: If    and      is radially unbounded,

          then the equilibrium point is globally asymptotically stable

   
.

T

n

V X f X f X

D V X=

=

R
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Krasovskii’s Method
( )

( )

( ) ( )

           

Hence, if    is negative definite,  is ndf.

So, by Lyapunov's 

  

                    

                    

                    

T T

T
T T

T T

T

V X f

f

f A

f

F X V X

f f f

f fX X f
X X

A f

F f

�

�

� �

� �

= +

⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

= +

=

theorem, 0 is asymptotically stable.X =



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

23

Generalized Krasovskii’s Theorem

( ) ( )

( )

Let          

 A sufficent condition for the origin to be asymptotically stable is that 
  two pdf matrices  and :   0, the matrix

              

 is negative semi-

:

T

A X

P Q X

F X

f X
X

A P PA Q

Theorem

�

∃ ∀ ≠

⎡ ⎤∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

= + +

( ) ( ) ( )

definite in some neighbourhood  of the origin.

 

In addition, if  and is radially unbounded,

 then the system is globally asymptotically stable

 
.

n T

D

D V X f Xf X P�= R
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Generalized Krasovskii’s
Theorem

( ) ( ) ( )
( )

 :   

              

                        

                        

                        

T

T T

TT T
T

T T T

T T

V X f X

V X

f X P

f P f f P f

f ff P X X Pf
X X

f PA f f AP f

f PA AP

Proof

� � �

� �

=
⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥⎟ ⎟⎜ ⎜= +⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂⎢ ⎥⎣ ⎦
= +

= + +( )
( ) N

Hence, the result.

                       

                       0  (ndf)          

T T T

ndfnsdf

Q Q f

f PA AP Q f f Qf
����	���


−

= + + −

<
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Invariant Set

( )
( ) ( )

( )( )

A set   is said to be an "invariant set" with respect to the 

system   if:

       0

Examples:

(i) An equilibrium point ( )

(ii) Any trajectary of an autonomous system 

, 0

e

M

X f X

X

M X

M X t

M X t M t

� =

=

=

∈ ⇒ ∈ ∀ >
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Limit Set

( )
( )

( )

Definition:

             Let  be a trajectory of the dynamical 

             system  .Then the set  is called 

             the limit set (or positive limit set) of  if

            for any , 

X t

X f X N

X t

p N

� =

∈ { } [ ]
( )

( )
( )

 a sequence of times 

            such that           as  

Note:  Roughly, the limit set   of  is

           whatever  tends to in the limit.

0,

  .
n

n n

t

X t t

N X t

X t

p

∃ ∈ ∞

→ →∞
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Limit Set

Example: 

      (i)    An asymptotically stable equilibrium point is the
              limit set of any solution starting from a close
              neighbourhood of the equilibrium point.

       (ii)  A stable limit cycle is the limit set for any 
               solution starting sufficiently close to it 
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A Useful Theorem
(Subset of LaSalle’s Theorem)

( )

( ) [ ]
( )

Theorem : The equilibrium point 0 of the autonomous system  

is asymptotically stable if:

                  (i)  0 (pdf) 0

                 (ii)  0 (nsdf) in a bounde

 
                

X X f X

V X X D D

V X

�

�

= =

> ∀ ∈ ∈

≤

( )
d region 

                 (iii) does not vanish along any trajectory in 

                         other than the null solution 0
Morever,

         If the above conditions hold good for R = a

 

 n

R D

V X R

X

�

\

⊂

=

( )nd  is radially unbounded, 

         then  0  is globally asymptotically stable.

V X

X =
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Example

( )
( )

( ) ( )

1 2

2
2 2 1 1 2 2

2 2
1 2

Example:                   

                                  

Solution:     Let  ,  0

                         

                           2

T

x x

x x x x x x

x x

x

V X

VV X f X
X

�

�

�

α

α α

α

=

=− − − +

= + >

⎛ ⎞∂ ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∂

=[ ]
( )
( )

2
21 2

2 1 1 2 2

22 2
1 2 2 1 2 1 2 2

  2   

                           2 2 2 2

x
x

x x x x x

x x x x x x x x

α

α α

−

⎡ ⎤
⎢ ⎥
⎢ ⎥− − +⎢ ⎥⎣ ⎦

= − − − +
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Example

( ) ( )

( )
( )

( ) ( )

22
2 1 2

2

2
2

2 1 1 2 2 2

1
1

2

(nsdf)

Now   

However,  

             i.e.   

          2 1

                     0   
0    

      0     
           0

  0   0

0           

x x x

x

x

x x x x x x

x
x X

x

V X

V X t

t t
�

�

�

α

∴ =

⎡ ⎤=− + +⎢ ⎥⎣ ⎦
≤
= ∀

⇔ = ∀
⇒ =

− − − + = =
⎡

=
⎣

0
0

⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦⎦
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Example

( )

( )

Here we have : 

                (i) does not vanish along any trajectory 

                      other than  0

               (ii) in  

               (iii)  is radially unbounded,

Hence, the 

0 n

X

V X

V
V X

�

�
=

≤ R

origin is .Globally asymptotically stable
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LaSalle’s Theorem

( )

Let :   be a continuously differentiable (not necessarily pdf) function 
and  (i)    be a compact set, which is 

              invariant with respect to the solution of  

       (ii)  0   i

V D
M D

X f X

V

�

�

→
⊂

=

≤

R

( ){ }
n   

       (iii)   :   and 0

                     i.e.  is the set of all points of :  0
       (iv)  is the largest invariant set in 

Then   Every solution starting in   approaches  as

M

E X X M V X

E M V
N E

M N

�

�
= ∈ =

=

 .t →∞
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Lasalle’s Theorem

( )
Remarks:

(i)  is required only to be continuously differentiable 

      It need not be positive definite.
(ii) LaSalle's Theorem applies not only to equilibrium 
      points, but also to more general d

V X

ynamic 
      behaviours such as limit cycles.
(iii) The earlier theorems (on asymptotic stability) can
         be derived as a corollary of this theorem. 
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Stability Analysis of a Limit 
Cycle Using LaSalle’s theorem

( )
( )

( )

2 2 2
1 2 1 1 2

2 2 2
2 1 2 1 2

1 1

2 2

2 2 2
1 2

Example:                

                               

Solution: 
  

Morever,   

, 0

  0 0
    

0 0

           

x x x x x

x x x x x

x x

x x

x x
d
dt

�

�

�
�

β

β β

β

=

=−

+ − −

+ − − >

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⇒ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

+ −

( )
( )

1 1 2 2

2 2 2
1 2 1 1 2

2 2 2
2 1 2 1 2

    2 2

                2

                        2

x x x x

x x x x x

x x x x x

� �

β

β−

= +
⎡ ⎤= + − −⎢ ⎥⎣ ⎦

⎡ ⎤+ + − −⎢ ⎥⎣ ⎦
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x1

x2

Stability Analysis of a Limit 
Cycle Using LaSalle’s theorem

( ) ( )2 2 2 2 2
1 2 1 2

2 2 2
1 2

2 2 2
1 2

0

0      if     

The set of points defined by  

     is an invariant set ;  i.e any trajectory starting on 
     this circle at t  stays on the circle

       2  

     

 

x x x x

x x

x x

β

β
β

= + − −

= + =
∴ + =

( )( )2 2 2
1 2

0

1 2

2 1

 

The trajectories on this invariant set are the solution of :

A clock-wise motion
 

                      

  
                    

x x

t t

x x

x x

X f X

�
�

�
β+ =

∀ ≥

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⇒⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
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Stability Analysis of a Limit 
Cycle Using LaSalle’s theorem

( ) ( ) ( )

( )
( )
( )

( ) [ ]
( )
( )

( )( )

22 2 2 2
1 2

1

1 2 2

2 2 2
2 1 1 22 2 2

1 2 1 2 2 2 2
1 2 1 2

2 2 2 2 2 2 2
1 2 1 2 1

1
Let  

4

       

  [Note: 0 in ]

    

               

              

V X V X

V X

x x

x x x x

x

x x

f XV V
x x f X

x x
x x x x

x x x x

�

\β

β
β

β

β β

−

= + − ≥

⎡ ⎤⎡ ⎤∂ ∂ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − −⎢ ⎥= + − ⎢ ⎥
⎢ ⎥+ − −⎣ ⎦

= + − + − −( )
( )( )

( ) ( ) ( )

2
2

22 2 2 2 2
1 2 1 2

2 2
1 2Note:

              

              0                    4

x

V X

x x x x

x x V X�

β=− + + −

≤ =− +
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Stability Analysis of a Limit 
Cycle Using LaSalle’s theorem

( )
( )2 2 2 2 2

1 2 1 2

1 2

2

              origin
          Here, 
(i.e it is an equilibrium point)

Moreover  

Either  0                or   

i.e   Either        or   
 

0

 

 0
      

0

X o

V X

x

x

x x x x

x

�

�

��	�


β

=

=

⇔ + = + =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

{ }

2 2
1 2

      Circle of radius 
    It is an invariant set
  (i.e it is a limit cycle)

2

LaSalle's Theorem
Step-1:   For any   , let us define 

              : 

          By constructi

:

( )

c

M X

x

V X c

���	��

β

β

β>

= ∈

+ =

≤R

on,  is closed and bounded M

( )In this set, 0 
(and this is true  )

 is an invariant set

V X

X M
M

≤

∀ ∈
∴

�
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Stability Analysis of a Limit 
Cycle Using LaSalle’s theorem

( ){ }

( ) { }
[ ]

2 2 2 2
1 2

Step-2   To find   :

              It is already shown that 

               0,0    : 

Step-3 To find : The largest invariant set in 

          Since both the subsets that

0E X

E X

N E

M V X

x x

�

β

= ∈

= ∈

⎡ ⎤=⎢ ⎥⎣ ⎦

∪ + =R

2 2 2
1 2

 constitute  are invariant, 
                                         
Hence, By Lasalle's Theorem, every motion starting 

in  converges either to the origin or to the limit cycle, 

E
N E

M x x β

=

+ =
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Stability Analysis (of limit cycle)

( ) ( )

( )

( )

22 2 2
1 2

1

2

2 2 2
1 2

4

Further analysis:

1
Note that  is a measure of 

4

distance of a point  to the limit cycle, since:
 

                    ,  if   

          Also  
4

=

 

= 0   

= 

V X

x

x

V X

V X

x x

x x

β

β

β

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

+ =
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎜⎝ ⎠

1

2

 ,if 
 

 0
 

0
x

x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎟ ⎣ ⎦⎣ ⎦
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Stability Analysis of a Limit 
Cycle Using LaSalle’s theorem

( )
( )

( ){ }

4 3

4

2

Selecting:  (i)    : (i.e. 

                 (ii)   :  

                (iii)     :

Then applying LaSalle's theorem, it follows that 
 any traject

/ 4 ,     4)

/ 4

 (this excludes origin)

c c

M X V X cR

β β β β

β β

< >

< <

= ∈ ≤

+

ory in   will converge to the limit cycle 
   The limit cycle is Convergent /Attractive.

Corollary:

Letting 0 , this also shows that the origin is unstable!

M

ε

⇒

→
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Domain of Attraction

( ) ( )

( ){ }

: Let ,  be trajectories of  with initial

condition  at 0  .Then the Domain of attraction is defined as

    : ,    as         

Philosophy : Around any asymptotically s

 

A e

X t X f X

X t

D X D X t X t

ψ

ψ

=

=

∈ → →∞

Definition �

�

table equilibrium 

                     point, there is a domain of attraction.
Question : Can we estimate a domain of attraction ?

Ans: Yes!  
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Domain of Attraction

( )

1 2

3
2 1 1 2

2

2
1 1 1

Example:              3

                             5 2

Eq. point:             0  

                            5 0      0 ,  5

0
 This system has three eq. points 

0

x x

x x x x

x

x x x

=

= − + −

=

− + = ⇒ = ±

∴
⎡ ⎤
⎢ ⎥
⎣ ⎦

�

�

( ) 2 4 2
1 1 1 2 2

5 5
 0    0

0
     Let us study the stability of 

0

Define      

 , ,

V X a x x x x xb c d= − + +

⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

46

Domain of Attraction

( )

( ) ( )
( )

2
3

1 1 21 2

2 3
2 1 2

1 2 1

where, , , ,  need to be choosen "appropriately".

3
        

5 2

                    3 4 2 12

6 10 2

  

                                        

a b c d

xV V
V X

x x xx x

c d x d b x x

a d c x x xc

∂ ∂
=

− +∂ ∂

= − −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

+

+ +

�

( )

4 2
15

Choose:    

2 12 0
12, 1, 6

6 10 2 0
          

   (onechoice)
          

c x

d b
a b c d

a d c

−

− =
⇒ = = = =

− − =

⎤
⎥
⎦
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Domain of Attraction

( ) ( )
( )

( ) ( )

2 2 2 4
1 2 1 2 1

2 2 4
2 1 1

With this choice,

3 2 9 3

   6 30 6

Hence, the system is locally asymptotically stable.

Note:  Here,  > 0  and  

       (locally )

                     (locally )

 

V X x x x x x

V X x x x

pdf

ndf

V X V X

= + + + −

= − − +�

�

{ }
1

1

0  as long as  1.6 1.6

2We may be tempted to conclude that  : 1.6    1.6

is a region of attraction .
 The conclusion is incorrect

This is because  is NOT a

<    

! 

                 

x

X x

D

D

−

∈ − < <

< <

=

Surprise :

\

n invariant set 
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Theorem: Domain of Attraction

( )
( )
 

 

Theorem: 

Let (i) be an equilibrium point of the system  

      (ii) :  be a continuously differentiable function 

     (iii)  be a compact set containing such that "  is invariant 

    

e

e

X X f X

V X D

M D X M

=

→

⊂

�

\

 

 

        with respect to the solution of the system" 

     (iv)  is such that    0 in  

0   if   

Under these assumption,   is a subset of the 

       < 
                                  

e

e

V X X M

X X

M

V ∀ ≠

= =

� �

{ }  

domain of attraction,
 i.e.   is an estimate of domain of attraction. 

Proof:  In LaSalle's theorem,  : & 0 Hence the result !. e

M

E X X M XV= ∈ ==�
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Example….Contd.

( ) ( )
( )

( )

( ) ( )

2 4 2
1 1 1 2 2

2 2 4
2 1 1

Note

               12 6 6 0 0

0 0

                 6 30 6

We already know that 

               0 and 0 happens in 

2 : 1.6  

:
       

  

               

V X x x x x x

V X x x x

V X V X

X

V

V

D

= − + + =

=

= − − +

∈ − <

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

> <

=

�

�

\

�

{ }1   1.6x <
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Domain of Attraction

( )

( )
1

1

2
2 21.6

21.6
2

2

Let us find the minimum of  along the

very edge of this set (to restrict this set further).
Then

24.16 9.6 6

9.6 12 0

9.6
0.8

12

  

 

x

x

V X

x x

x
x

x

V

V

=

=

= + +

∂
= + =

∂

−
⇒ = = −
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Domain of Attraction

( ) ( )

( )

( )

1

1

2
2 21.6

2 2

2

2
2

1.6
2

1

2

Similarly 

24.16 9.6 6

 9.6 12 0

0.8

Also          12 0

1.6 1.6
has local minima when 

0.8 0.8
 = ,

x

x

x x
x x

x

x

x

x
V X

x

V

V

=−

=±

∂ ∂
= − +

∂ ∂

= − + =

⇒ =

∂
=

∂

−
∴

−

>

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
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Domain of Attraction

( ) ( )

[ ]
( ){ }

Moreover, 1.6, 0.8 1.6, 0.8 20.32

                  (i.e. both the minimums are equal)

Else, we need to choose the minimum of the  two minimums.

= : 20.32 is an invariant set,

    and hence,

 

V V

M X V XD Dε

− − −

∴ ∈ −

= =

≤ ⊂

( )

  is an estimate of the domain of attraction

Note: As long as 0,  the local minimums are excluded. 

Hence 0 as long as it starts in 

M

X t M

ε >

→
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An Interesting Result

( )
( ) ( )
( ) ( )

( )
( ) ( )( )

Lemma 

If a real function  satisfies the 

in equality    ,

Then            0

Proof: 

Let        

then           Note: 0

t

V t

V t V t

V t e V

Z t V V

V V Z t Z t

α

α α

α

α

−

≤ − ∈

≤

= +

+ = ≤

�

�

�

R
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An Interesting Result
( )

( ) ( ) ( ) ( )

( ) ( )

0 0 0

0

Let us consider  as an "external input"

    to this "linear system"
Then 

0 1

0

t tt

t

Z t

V t e V e Z d

V t e V

α τα

α

τ τ− −−

≥ ≤

≤

−

= ⋅ ⋅∫

≤

+

∴

�	
 ��	�

����	���
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