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Variable Gradient Method:

*x Selecta VV :8_V: g(X) that contains some adjustable parameters
a T
x Then dV(X):[—] dX LT
OX To recover a unique V,
X X [ %
= = VV =g(X) must satis
fdv(x):f[a—\f] dX pa ey
i e OX the "Curl Condition™:
X x = ie Gg| agJ
V(X)-V(0)= [ g(X)dX S
o=y

However, note that the intergal value depends on the initial and final
states (not on the path followed). Hence, integration can be conveniently
done along each of the co-ordinate axes in turn; i.e.
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Variable Gradient Method:

Note: The free parameter of g (X ) are constrained to

satisfy the symmetric condition, which is satisfied
by all gradients of a scalar functions.
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Variable Gradient Method:

Theorem: A function g (X ) is the gradient of a scalar
99 (X >}

function V (X ) if and only if the matrix

IS symmetric; where

09,
0%,
0g(X) 20
OX o
0%

99,
OX,
g,

OX, |

Proof: Please see Marquez book
(Appendix)

ADVANCED CONTROL SYSTEM DESIGN
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



7

Variable Gradient Method:

i

Proof : (Necessity)
oV
g(X)= P
89(X) i o0V
OX oo
oV
OX,’

Assume:

oV

\ OX, 0%,

oV Y
g Oeox
oV oV
Grok O
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Variable Gradient Method:

o OV . 0g, 09,
OX0X;  OX;0X, oX; 0%
_|og(X) .
Hence,the matrix X should be symmetric.
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Variable Gradient Method:

oy
Sufficiency: Assume %:&
oX;  Ox
| oV :
o show ox g; (X)
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Variable Gradient Method:

We have:

(x):]“g<x)dz
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Variable Gradient Method:

=

oV
ShRtRa PR 0
= 0, (%, )
¥ 892 % X
+ _(Xl’ Xow e, O)dX2
o
3 ag 3 <
o : (X11 Kyyownnny Xn—l’Xn)an
J o
Gdg.
= 0,(%,0,..... 0)+ a—(Xsz’O """" 0)ax, +
Gl
7 d9, % )dX
K +[8_Xn(xli X21 """" Xn-1: Xn)dxn
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Variable Gradient Method:

Xo

== gl(xl’o’ ....... 0)—|—g1(xl,)?2;0; """" O)

o0
e b 0,06, Ko i X a0 % )2
0,(%,0,.....,0)+9,(%,%,,0,......,0) — 9,(%,0,......,0)]

+ o Gy (X Xy X ) — G (X1 Xy ey X, 0))
ot e

oV
: O
ie ox g, (X)
oV :
Similarl — = g.(X) , Vi=1:--,
milarly  — g, (X) | N
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Variable Gradient Method:
Example

Problem: Analyze the stability behaviour of the following system

X, = DX, + XX
Solution: X =0 is an equilibrium point

V K.k X
Assume 8—:g(X): : :
OX ket
A s;/mme}?ic maJtrix
Note: % = % —¢
oX,  OX
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/Variable Gradient Method: \

Example
Further, let us assume
oV _|9:(X)|_[kx
OX |9,(X)] [k,
= V(X):fgl(xl,O)df('lJrfgz(xl,kz)d)‘('2
0 0
= [ k%% + [ k%08,
0 0
1
\ e E(klxlz i k2X22) /
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Variable Gradient Method:
Choose k., K, >0

ThenV (X)>0 VX =0 and V(0)=0

V (X )is a Lyapunov function candidate.

V(x)=g" (X)f(X)=[kx, kzxz]bx:zllx;
= —kax; +k, (b+ %X, )%,
Let us choose k, =k, =1. Then
V(X)=—ax; +(b+xx,)x;
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Variable Gradient Method:

Unless we know about a, b at this point nothing can be

said about V (X ). Letus assume a>0, b <0. Then

V(X)=—ax’— (jb|—x%,) x;

o /

>0 (for small x;x,)

V (X )< 0 insome domain D C R* and 0€ D
i.e V(X) is negative definite in D

. The system is locally asymptotically stable!
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Krasovskii’s Method

Let us consider the system X = f (X))
of

OX

Let A(X)= - Jacobian matrix

Theorem:
If the matrix F (X )£ A(X)+ A" (X) is ndf forall X eD (0€ D),

then the equilibrium point is locally asymptotically stable and a

Lyapunov function for the system is
V=
Note: If D=R" and V(X) is radially unbounded,

then the equilibrium point is globally asymptotically stable.
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Krasovskii’'s Method

Claim-1: Since F (X ) is ndf, A(X )is invertible.

Proof (by contradiction):
Let A(X ) be singular

Then =i == 02 Ay —
BUL VB Y,y (Al
=Y, (AY,)+(Y, AT)Y, =0

i.e. F is not ndf.

Hence, A(X ) is non-singular (i.e., it is invertible).
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Krasovskii’s Method
Claim-2:  The invertibility (and continuity) of A(X ) guarantees

that the function f (X )can be uniquely inverted.

Justification:

This is perphaps straight forward from unifrom convergence
property of Taylor series expansion.

This leads to the conclusion that the dynamic system has only one
equilibrum pointin D.i.e. f(X)=0, VX =0, X €D.
= O el
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Krasovskii’'s Method

e iy
T
el ﬂ X_|_XT ﬂ}f
OX OX
= fT(AT+A)f
—f'F f

Hence, if F(X) is negative definite, V (X ) is ndf.

So, by Lyapunov's theorem, X = 0 Is asymptotically stable.
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Krasovskii’'s Method

Note: The global asymptotic stability of the system is guaranteed
by the Global version of Lyapunov's direct method.

Comment: While the usage of this result is fairly

straight forward, its applicability is limited in
practice since F (X ) for many systems

do not satisfy the negative definite property.

ADVANCED CONTROL SYSTEM DESIGN O
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



Generalized Krasovskii’s Theorem

Theorem :

o (X)
OX

A sufficent condition for the origin to be asymptotically stable is that

o G

3 two pdf matrices P and Q: VX = 0, the matrix
F(X)=A"P+PA+Q

IS negative semi-definite in some neighbourhood D of the origin.

In addition, if D=R" and V (X )2 f' (X ) P f (X) is radially unbounded,
then the system iIs globally asymptotically stable.
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Generalized Krasovskil’'s
Theorem

i

\

Proof: V{X)=1f'(X)Pf{X)
V(X)=|f"P f+fTP f]
:
fTP[g—:(]TX+[§—:(]TX
= fTPA"f + fTAP f
= fT(PA" + AP+Q—-Q)f
:fT(PAT+AP+Q)f—£gJ

ndf

Pf

n;af

<0 (ndf) Hence, the result.
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Example

Problem: Analyze the stability behaviour of the following system
X = —6X% 42X,

e 3
e G G

Solution:
of —6 2
A e — === 5
OX 2 —6-6X
- =] 4
F=A+A = -
4 —12-12x,
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Example

Eigen values of F:

A+12 —4

3 =0
—4  A+12412x,

i) Dl 16 D
A° 4 24\ +144 +12X,° X +144X,° —16 =0
M +(24+12%,7 ) A +(128+144%,7) =0

A, = %[—(24+12x22) j:\/(24+12x22)2 — 4(128+144x,%)
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Example

= _(1246x2)+ \/(12 T 6X22>2 o (128+144x22)

0<(*) < (12+6x3)

<0 VX, eR
A is ndf in R*
Morever, V (X)= f'(X)f(X)
— (—6%, 4+ 2%,)° +(2x1 —6X, — 2x23)2
— OO as HXH — OO

X =0 1s globally asymptotically stable.
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Invariant Set

A set M Is said to be an "invariant set" with respect to the

system X = f (X)) if:

X (0)eM

—

Examples:

X(t)eM ,vt>0

(1) An equilibrium point (M = X,)

(ii) Any trajectary of an autonomous system (M — X (t))
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Invariant Set

(iiii) A limit cycle
(VVM =R’

(V) Q =+

X €R":V(X)<I

where, V ( X ) is a continuously differentiable function

Note: (1) V (X ) need not be pdf.

(2) The condition implies that once the trajectory crosses

the surface V (X ) = ¢, it can never come out again.
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Limit Set

Definition:

Let X (t) be a trajectory of the dynamical
system X = f (X ) .Then the set N is called
the limit set (or positive limit set) of X (t) if
for any p € N, 3 a sequence of times {t, } €|0,00]
such that X(t,)—p as t, — oo
Note: Roughly, the limit set N of X (t) is

whatever X (t) tends to in the limit.
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Limit Set

Example:

(1) An asymptotically stable equilibrium point is the
limit set of any solution starting from a close
neighbourhood of the equilibrium point.

(i) A stable limit cycle Is the limit set for any
solution starting sufficiently close to it
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Some Useful Results

Lemma-1

If the solution X (t,t,, X, ) of the system X = f (X )

Is bounded for t > t, ,then its limit set N is:

(1) bounded
(1) closed (i.e. it is a non empty "compact set")
(i11) Non-empty

Moreover, as t — oo , the solution approaches N.

Lemma-2: The limit set N of a solution X (t,tO,XO) of the autonomous

system X = f(X) IS invariant with respect to the same system.
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A Useful Theorem
(Subset of LaSalle’s Theorem)

Theorem : The equilibrium point X = 0 of the autonomous system X = f (X))
Is asymptotically stable if:
(i) V(X)>0 (pdf)yX €D [0€ D]
(i) V(X )< 0 (nsdf) in a bounded region R C D

(iii) V (X ) does not vanish along any trajectory in R
other than the null solution X =0
Morever,
If the above conditions hold good for R =R" and V (X) Is radially unbounded,
then X =0 is globally asymptotically stable.
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Proof of the Theorem
V <0
= The system is stable
l.e. foreach e >0 , 46>0:
X, | <6 = |X(t)|<e

or, Any solution starting inside the closed ball B,
will remain within the closed ball B_
= The solution (starting within B, ) Is bounded.
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Proof of the Theorem

Hence, X (t) tends to its limitsetN C B_
and B_ IS compact. (By Lemma - 1)

Moreover, V (X) IS continous on the compact set B_
and V(X)<0, .. V(X)—L>0ast— oo
ie V(X)=L VYXeN (N:the limit set)

Note that N Is invariant set with respect to the
system X = f (X)) (By Lemma - 2)
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Proof of the Theorem

= Any solution that starts in N will remain within it
for all furture time.

However, along that solution V (X )=0 ,asV (X )=L
But, by the assumption of the theorem, V (X ) does not

vanish along any trajectory other than the null solution X =0
Hence, Any solution starting in R C B, converges to
X=0as t— o0
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Example - 1:
Pendulum with Friction
Example: (Pendulum with friction)
X, = X,
g K

XZ — —TSin X.L e [E] X,

V (X):%mlzxz2 + mgl (1—cosx,)

>0 VX eD :(—7T,7T>><R
V(X )=—kI?x?, : nsdf [Note: 0 € D]
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Example - 1:
Pendulum with Friction

Now let us examine the condition

V(X)=0 Wt
—kI*x*, =0
< 8k = e Hehee
G K
—sinX, +—x, =0
g

sink =0 Lox 0] = x 0 lasxcl )
Hence, V (X ) happens only for X = 0.

Hence, X = 0 is locally asymptotically stable!
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Example - 2

Example: K=

> 2
X, = =%, — X — (X + %) X,

Solution: LetV (X)=ax’,+x,°, a>0

- Al
ViX)= |—| (X
()= || 100
_ .
= 2%, 2X, | :
L a0

2 2,2
= 20X, X, — 2%; — 2% X, —2(X + %, ) X5
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Example - 2

V(X) =251+ (x + )]

< 0 (nsdf)
Now V(X)=0 Wt
o i =0
= X, =0

—x,—ax, — (% +%) x, =0 (However, x, = 0)

_ X
e —0 e —
X,| |0 /
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Example - 2

Here we have :
(i) V (X ) does not vanish along any trajectory
other than X =0
i)V <0in R"
(iii) V (X ) is radially unbounded,

Hence, the origin is Globally asymptotically stable.
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LaSalle’s Theorem

Let V. D — R be a continuously differentiable (not necessarily pdf) function
and (i) M C D be a compact set, which is

invariant with respect to the solution of X = f (X
(i) V<0 in M
(i) E = {X XeM andV O}

i.e. E is the set of all pointsof M : V =0
(iv) N is the largest invariant set in E

Then Every solution starting in M approaches N ast — oc.
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| asalle’s Theorem

Remarks:

(i) V (X ) is required only to be continuously differentiable

It need not be positive definite.

(11) LaSalle's Theorem applies not only to equilibrium
points, but also to more general dynamic
behaviours such as limit cycles.

(111) The earlier theorems (on asymptotic stability) can

be derived as a corollary of this theorem.
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