Lecture – 33

Stability Analysis of Nonlinear Systems Using Lyapunov Theory – ^I

> *Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore*

Outline

- Motivation
- \bullet **Definitions**
- \bullet Lyapunov Stability Theorems
- \bullet Analysis of LTI System Stability
- \bullet Instability Theorem
- \bullet **Examples**

References

- z H. J. Marquez: *Nonlinear Control Systems Analysis and Design*, Wiley, 2003.
- z J-J. E. Slotine and W. Li: *Applied Nonlinear Control*, Prentice Hall, 1991.
- \bullet H. K. Khalil: *Nonlinear Systems*, Prentice Hall, 1996.

Techniques of Nonlinear Control Systems Analysis and Design

- \bullet Phase plane analysis
- \bullet Differential geometry (Feedback linearization)
- \mathbb{C} Lyapunov theory
- **Intelligent techniques: Neural networks,** Fuzzy logic, Genetic algorithm etc.
- \bullet **Describing functions**
- \bullet **Optimization theory (variational optimization,** dynamic programming etc.)

Motivation

- **Eigenvalue analysis concept does not** hold good for nonlinear systems.
- Nonlinear systems can have multiple equilibrium points and limit cycles.
- \bullet **• Stability behaviour of nonlinear systems** need not be always global (unlike linear systems).
- \bullet Need of a systematic approach that can be exploited for control design as well.

System Dynamics

 $\dot{X} = f(X)$ $f: D \to \mathbb{R}^n$ (a locally Lipschitz map) $X = f(X)$ $f: D \to \mathbb{R}$

*D***: an open and connected subset of** \mathbb{R}^n

Equilibrium Point (*X e*)

 $\dot{X}_e = f(X_e) = 0$

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Open Set A set $A \subset \mathbb{R}^n$ is open if for every $p \in A$, $\exists B_r(p) \subset A$

Connected Set

- \bullet A **connected set** is a set which cannot be represented as the <u>union</u> of two or more <u>disjoint</u> nonempty open subsets.
- \bullet Intuitively, a set with only one piece.

Stable Equilibrium

 $\left| X(0) - X_e \right| < \delta(\varepsilon) \Rightarrow \left\| X(t) - X_e \right\| < \varepsilon \quad \forall t \geq t_0$ X_e is stable, provided for each $\varepsilon > 0$, $\exists \delta(\varepsilon) > 0$:

Unstable Equilibrium

If the above condition is not satisfied, then the equilibrium point is said to be unstable

Convergent Equilibrium

If
$$
\exists \delta: \|X(0) - X_e\| < \delta \implies \lim_{t \to \infty} X(t) = X_e
$$

Asymptotically Stable

If an equilibrium point is both stable and convergent, then it is said to be asymptotically stable.

Exponentially Stable

$$
\exists \alpha, \lambda > 0: \quad \left\| X(t) - X_e \right\| \le \alpha \left\| X(0) - X_e \right\| e^{-\lambda t} \quad \forall t > 0
$$
\n
$$
\text{whenever} \quad \left\| X(0) - X_e \right\| < \delta
$$

Convention

The equilibrium point $X_e = 0$

(without loss of generality)

A function $V: D \to \mathbb{R}$ is said to be **positive semi definite** in D if it satisfies the following conditions:

> $(i i) V(X) \geq 0, \forall X \in D$ (i) $0 \in D$ and $V(0) = 0$

 $V: D \to \mathbb{R}$ is said to be **positive definite in** D if condition (*ii)* is replaced by $\;V\left(\,X\,\right) >0\;$ *in* $\;D-\{0\}$

 $V: D \to \mathbb{R}$ is said to be negative definite (semi definite) in D if $-V(X)$ is positive definite.

Theorem - 1 (Stability)

Let $X = 0$ be an equilibrium point of $\dot{X} = f(X)$, $f: D \to \mathbb{R}^n$. Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that: (*i*) $V(0) = 0$ (*ii*) $V(X) > 0$, in $D - \{0\}$

(*iii*) $\dot{V}(X) \le 0$, in $D - \{0\}$

Then $X = 0$ is "stable".

<u>Theorem – 2 (Asymptotically stable)</u>

Let $X = 0$ be an equilibrium point of $\dot{X} = f(X)$, $f: D \to \mathbb{R}^n$. Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that: (*i*) $V(0) = 0$ (*ii*) $V(X) > 0$, *in* $D - \{0\}$ (iii) $\dot{V}(X) < 0$, in $D - \{0\}$ Then $X = 0$ is "asymptotically stable".

Theorem – 3 (Globally asymptotically stable)

Let $X = 0$ be an equilibrium point of $\dot{X} = f(X)$, $f: D \to \mathbb{R}^n$. (*i*) $V(0) = 0$ $(i) V(X) > 0, \text{ in } D - \{0\}$ (iii) $V(X)$ is "radially unbounded" (iv) $\dot{V}(X) < 0$, in $D - \{0\}$ Let $V: D \to \mathbb{R}$ be a continuously differentiable function such that:Then $X = 0$ is "globally asymptotically stable". ó $X = f(X), f:D \to \mathbb{R}$ ٠

Theorem – 3 (Exponentially stable)

In addition to it, suppose \exists constants k_1, k_2, k_3, p : Suppose all conditions for asymptotic stability are satisfied.

$$
(i) \quad k_1 \|X\|^p \le V(X) \le k_2 \|X\|^p
$$

$$
(ii) \ \dot{V}(X) \leq -k_3 \|X\|^p
$$

Then the origin $X = 0$ is "exponentially stable".

Moreover, if these conditions hold globally, then the

 $origin X = 0$ is "globally exponentially stable".

Example: Pendulum Without Friction

• System dynamics $x_1 \triangleq \theta$, $x_2 \triangleq \dot{\theta}$ $\left[\dot{x}_2\right]$ $\left[-\left(g/l\right)\right]$ 1 2 $_2$ | $-$ (g / l)sin x_1 \boldsymbol{x} \dot{x} , $|-(g/l)\sin x$ $\begin{bmatrix} \dot{x}_1 \\ \vdots \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$ = $=\left(\frac{1}{a}\right)^2$ $\lfloor x_2 \rfloor \lfloor -(g/l) \sin x_1 \rfloor$ c ۰

 \bullet Lyapunov function $V = KE + PE$

$$
= \frac{1}{2}m(\omega l)^{2} + mgh
$$

= $\frac{1}{2}ml^{2}x_{2}^{2} + mg(1 - \cos x_{1})$

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Pendulum Without Friction

$$
\dot{V}(X) = (\nabla V)^T f(X)
$$
\n
$$
= \left[\frac{\partial V}{\partial x_1} \frac{\partial V}{\partial x_2} \right] \left[f_1(X) f_2(X) \right]^T
$$
\n
$$
= \left[mgl \sin x_1 m l^2 x_2 \right] \left[x_2 - \frac{g}{l} \sin x_1 \right]
$$
\n
$$
= mglx_2 \sin x_1 - mglx_2 \sin x_1 = 0
$$
\n
$$
\dot{V}(X) \le 0 \quad \text{(nsdf)}
$$
\nHence, it is a "stable" system.

 T

Pendulum With Friction

Modify the previous example by adding the friction force $kl\dot{\theta}$

 $ma = -mg \sin \theta - kl\theta$

Defining the same state variables as above

 $x_1 = x_2$

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

Pendulum With Friction

$$
\dot{V}(X) = (\nabla V)^T f(X)
$$
\n
$$
= \left[\frac{\partial V}{\partial x_1} \frac{\partial V}{\partial x_2} \right] \left[f_1(X) f_2(X) \right]^T
$$
\n
$$
= \left[mgl \sin x_1 m l^2 x_2 \right] \left[x_2 - \frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \right]^T
$$
\n
$$
= -kl^2 x_2^2
$$
\n
$$
\dot{V}(X) \le 0 \text{ (nsdf)}
$$

Hence, it is also just a "stable" system. (A frustrating result..!)

Analysis of Linear Time Invariant System

System dynamics: $X = AX$, $X = AX$, $A \in \mathbb{R}^{n \times n}$ $\dot{X} = AX$, $A \in \mathbb{R}^{n \times n}$

 \blacksquare yapunov function: $V(X) = X^TPX,$ $P>0$ (pdf)

 \overline{D} **Derivative analysis:** $\overline{V} = \overline{X}^T P X + \overline{X}^T P \overline{X}$ $=X^{T}\left(A^{T}P+PA\right)X$ $X^T A^T P X + X^T P A X$ $\dot{V} = \dot{\mathbf{Y}}^T \, \boldsymbol{P} \mathbf{Y} \perp \mathbf{Y}^T \, \boldsymbol{P} \dot{\mathbf{Y}}$

Analysis of Linear Time Invariant System

 $\boldsymbol{Y} = -\boldsymbol{X}^T \boldsymbol{Q} \boldsymbol{X} \quad (\boldsymbol{Q} > 0)$

By comparing
$$
X^T(A^T P + P A)X = -X^T Q X
$$

For a non-trivial solution

$$
P A + A^T P + Q = 0
$$

(Lyapunov Equation)

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore

Analysis of Linear Time Invariant System

Theorem : The eigenvalues λ_i of a matrix $A \in \mathbb{R}^{n \times n}$ satisfy $\text{Re}(\lambda_i) < 0$ if and only if for any given symmetric pdf matrix Q , \exists a unique *pdf* matrix P satisfying the Lyapunov equation.

Proof: Please see Marquez book, pp.98-99.

Note: P and Q are related to each other by the following relationship:

$$
P = \int_{0}^{\infty} e^{A^{T}t} Q e^{At} dt
$$

However, the above equation is seldom used to compute P. Instead P is directly solved from the Lyapunov equation.

Analysis of Linear Time Invariant Systems

- \bullet Choose an arbitrary symmetric positive definite matrix Q $(Q=I)$ $=I)$
- \bullet • Solve for the matrix P form the *Lyapunov equation* and verify whether it is positive definite
- \bullet • Result: If P is positive definite, then $V(X)$ and hence the origin is "asymptotically stable". $\dot{V}(X) < 0$

Lyapunov's Indirect Theorem

Let the linearized system about $X = 0$ be $\Delta \dot{X} = A(\Delta X)$. The theorem says that if all the eigenvalues λ_i $(i = 1, ..., n)$ of the matrix A satisfy $\text{Re}(\lambda_i)$ < 0 (i.e. the linearized system is exponentially stable), then for t he nonlinear system the origin is locally exponentially stable.

Instability theorem

Consider the autonomous dynamical system and assume $X=0$ is an equilibrium point. Let $V: D \rightarrow \mathbb{R}$ have the following properties:

 $(i) V(0) = 0$

 (iii) $\exists X_0 \in \mathbb{R}^n$, arbitrarily close to $X = 0$, such that $V(X_0) > 0$ $U = \{ X \in D : ||X|| \le \varepsilon \text{ and } V(X) > 0 \}$ (*iii*) $V > 0$ $\forall X \in U$, where the set U is defined as follows ٠

Under these conditions, $\,X{=}0\,$ is unstable

Summary

- Motivation
- \bullet Notions of Stability
- \bullet Lyapunov Stability Theorems
- \bullet Stability Analysis of LTI Systems
- \bullet Instability Theorem
- \bullet **Examples**

References

- z H. J. Marquez: *Nonlinear Control Systems Analysis and Design*, Wiley, 2003.
- z J-J. E. Slotine and W. Li: *Applied Nonlinear Control*, Prentice Hall, 1991.
- \bullet H. K. Khalil: *Nonlinear Systems*, Prentice Hall, 1996.

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE De pt., IISc-Ban galore