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LQR Design: 
Problem Objective

To drive the state      of a linear (rather 
linearized) system to the origin 
by minimizing the following quadratic 
performance index (cost function)
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LQR Design: Guideline for 
Selection of Weighting Matrices
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LQR Design: 
Some Facts to Remember

The pair           needs to be controllable and the pair
needs to be detectable

(these are usually chosen as diagonal matrices)

By default, it is assumed that 

Constrained problems (state and control inequality 
constraints) are not considered here. Those will be 
considered later.
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LQR Design: 
Problem Statement

Performance Index (to minimize):

Path Constraint:

Boundary Conditions:
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LQR Design:
Necessary Conditions of Optimality

Terminal penalty:

Hamiltonian:

State Equation:

Costate Equation:

Optimal Control Eq.:

Boundary Condition:
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LQR Design: 
Derivation of Riccati Equation

Guess:

Justification:

( ) ( ) ( )t P t X tλ =

( )
( )

( )

From functional analysis theory of normed linear space,    

lies in the "dual space" of  , which is the space consisting 

of all continuous linear functionals of  .

Reference: Optimization by Vecto
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LQR Design: 
Derivation of Riccati Equation

Guess ( ) ( ) ( )t P t X tλ =
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LQR Design: 
Derivation of Riccati Equation

Riccati equation

Boundary condition

1 0T TP PA A P PBR B P Q−+ + − + =

( ) ( )is freef f f f fP t X S X X=
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LQR Design: 
Solution Procedure

Use the boundary condition               and 
integrate the Riccati Equation backwards 
from     to    
Store the solution history for the Riccati 
matrix
Compute the optimal control online

( )f fP t S=
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LQR Design: 
Infinite Time Regulator Problem
Theorem (By Kalman)

Algebraic Riccati Equation (ARE)

Note:
ARE is still a nonlinear equation for the Riccati matrix. It is not 
straightforward to solve. However, efficient numerical methods 
are now available.

A positive definite solution for the Riccati matrix is needed to
obtain a stabilizing controller.

1 0T TPA A P PBR B P Q−+ − + =

As  ,  for constant  and  matrices, 0ft Q R P t→∞ → ∀
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A Motivating Example:
Stabilization of Inverted Pendulum

( )
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System dynamics:  

                 , /
Linearized about vertical equilibrium point
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A Motivating Example:
Stabilization of Inverted Pendulum
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A Motivating Example:
Stabilization of Inverted Pendulum

mgθ Lu
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However,   is a diagonal term, which needs to be real and positive.
Hence,    needs to be positive. Therefore   

1 1, 2

Moreover,
0

  (not needed i

n n

n

n

p
p

p c p p
c c

p p c p p

p c p p p

ω ω

ω

ω

⎡ ⎤= + + =⎣ ⎦

+ − =

= −

( )

1 2 2
2 3

2
2 3

n this problem)

Gain Matrix:

Control:

TK R B P c p c p

u K X c p pθ θ

− ⎡ ⎤= = − −⎣ ⎦

= − = +



ADVANCED CONTROL SYSTEM DESIGN  
Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

16

A Motivating Example:
Stabilization of Inverted Pendulum

mgθ Lu

Analysis
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A Motivating Example:
Stabilization of Inverted Pendulum

mgθ Lu

Analysis

( )
( ) ( )

( )
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Closed-Loop Poles:

               2 0
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Both of the closed-loop poles are strictly in the left-half plane.

Hence, the closed-loop is guaranteed to be “asymptotically stable”.
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Example: Finite Time 
Temperature Control  Problem

( )

0

where
, : Constants
   : Temperature

: Ambient temperature (Constant = 20 C)
  :  Heat input
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θ θ θ
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System dynamics :
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Problem formulations

Case – 1: Case – 2: 

( )
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Cost Function:
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Solution:

( ) ( )
( ) ( )
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Solution:
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Solution: Case – 1 (Hard constraint)
( ) ( )
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Taking laplace transform:
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Solution: Case – 1 (Hard constraint)
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Solution: Case – 1 (Hard constraint)
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Solution: Case – 1 (Hard constraint)

( )10
( )

f fat at

f

e e
x t

−−
=

Note : 

( )f fat ate e−−
10  

(i.e. The boundary condition is "exactly met".)
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Solution: Case – 2 (Soft constraint)

( )

( )

( ) ( )

0 0

2 2

0

2

30 10 . 

Hence the cost function is
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Solution: Case – 2 (Soft constraint)
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Solution: Case – 2 (Soft constraint)
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Correlation between hard and soft 
constraint results
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