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LOR Design:
Problem Objective

To drive the state X of a linear (rather
inearized) system |X = AX + BU | to the origin
oy minimizing the following quadratic
performance index (cost function)

Uy
J :%(XISfo )+%I(XTQ X +UTRU)dt

[

where
S;,Q=0 (psdf), R>0 (pdf)
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LOR Design: Guideline for
Selection of Weighting Matrices

S; >0 (psdf), Q=0 (psdf), R >0 (pdf)
These are usually chosen as diagonal matrices, with

S, = maximum expected/acceptable value of (llef )

g, = maximum expected/acceptable value of (1/xi2)

r = maximum expected/acceptable value of (1/ui2)
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LOR Design:
Some Facts to Remember

The pair { A, B} needs to be controllable and the pair
{A.JQ} needs to be detectable

S; 20 (psdf), Q=0 (psdf), R >0 (pdf)

(these are usually chosen as diagonal matrices)
By default, it is assumed that t; —

Constrained problems (state and control inequality
constraints) are not considered here. Those will be

considered later.
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LOR Design:
Problem Statement

Performance Index (to minimize):

B 1o :
J :é(xfsfxf?+£§(x QX +U RU?dt
o(X1) L(X V)
Path Constraint: X =AX+BU

Boundary Conditions: X (0)= X, : Specified
t, : Fixed, X (t. ):Free
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LOR Design:
Necessary Conditions of Optimality

Terminal penalty: go(Xf):%(XISfo)

Hamiltonian:  H =%(XTQX+UTRU)+/1T(AX+BU)
State Equation: X = AX +BU
Costate Equation: A=—(oH/oX)=—(QX +A"4)

Optimal Control Eq.;(6H/0U)=0 = U=-R'B'A

Boundary Condition: A, =(dp/0X,)=S,X,
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LOR Design:
Derivation of Riccati Equation

Guess: |A(t)=P(t)X(t)
Justification:

From functional analysis theory of normed linear space, A(t)

lies in the "dual space" of X (t) which is the space consisting

of all continuous linear functionals of X (t)

Reference: Optimization by Vector Space Methods
D. G. Luenberger, John Wiley & Sons, 1969.
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LOR Design:
Derivation of Riccati Equation

Guess |A(t)=P(t)X(t)
A =PX +PX
=PX +P(AX +BU)
=PX +P(AX -BR'B' 1)

=PX +P(AX —~BR™'B"PX
~(QX + ATPX ) =(P+PA-PBR'B"P) X
(P+PA+ATP-PBR'B'P+Q)X =0
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LOR Design:
Derivation of Riccati Equation

Riccati equation

P+PA+A'P-PBR'B'P+Q=0

Boundary condition
Pt )X, =S, X, (X, isfree)
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LOR Design:
Solution Procedure

Use the boundary condition P(t)=s, and
iIntegrate the Riccati Equation backwards
from t, to t

Store the solution history for the Riccati
matrix

Compute the optimal control online

U :—(R‘lBTP)X - K X
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LOR Design:
Infinite Time Regulator Problem

Theorem (By Kalman)

As t. — oo, for constant Q and R matrices, P -0 Vt

Algebraic Riccati Equation (ARE)
PA+A'"P-PBR'B'P+Q=0

Note:

ARE is still a nonlinear equation for the Riccati matrix. It is not
straightforward to solve. However, efficient numerical methods
are now available.

A positive definite solution for the Riccati matrix is needed to
obtain a stabilizing controller.
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Example — 1:
Stabilization of Inverted Pendulum
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A Motivating Example:
Stabilization of Inverted Pendulum

System dynamics:

3 0N g
O=w'0-u, o =glL
(Linearized about vertical equilibrium point) ﬂ =
System dynamics (state space form): Performance Index (to minimize):
Define: x, =6, x, =6 :
% : J:EI(QZJr%qudt
G L O 2% c
Yol o o]t 10 1
—_— < - Jo. o - g Q= . R= =
X A X S 0 0 C
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A Motivating Example:
Stabilization of Inverted Pendulum

ARE:
PA+ A'P-PBR'B'P+Q=0 mg
P P, : . a
Let P= (a symmetric matrix) >
{pz pj Z.
{pzwﬁ p1}+{p2a)r? psa)r?}_{ C2p22 Czpzpﬂ_'_{l O}_{O O}
p3a)§ P, Py P, o P, Ps € p§ 0 O 0 0
Equations:
2p,0; —c*p; +1=0 = p2=i2[a)§i\/a);‘+cz}
C

P+ p3a)§ —c* P, P; = 0 (repeated)

1
\2p2—c2p§:0 = D /
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A Motivating Example:
Stabilization of Inverted Pendulum

However, p, is a diagonal term, which needs to be real and positive.

Hence, p, needs to be positive. Therefore

P, :iz[a)r$+\/a):+cz}’ Ps :%\/ﬂ

C
Moreover,

ANAANNN

P, + pS&)ﬁ —c* P,P; =0
p, =c?p,p, — p,w> (not needed in this problem)

Gain Matrix:
K=R*B'P=[—c’p, —¢°p,]
Control:

U=-K X =¢*(p,6+ p,d)
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A Motivating Example:
Stabilization of Inverted Pendulum

Analysis

Open-Loop System:

=) 0 mg
A-A=| ", |=22-a}=0 ulyt
—Q), A a I
A=*w, (righthalf pole: unstable system) ~ ' :
Closed-Loop System: Define: o’ =@’ +¢°
0 1 B
Ao {ws e 0, _? pj P2 c2 ( )
Closed-Loop Poles: 1 \/5 ; N
=—\2p, =— |0, +@
A1 -Ay|=0 S cz( i
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A Motivating Example:
Stabilization of Inverted Pendulum

Analysis

Closed-Loop Poles:
2242 (0t +o?) A+t =0

A, = ——(a)2 + o’ )1/2 i ji(a)2 —? )1/2

J2
(Note: o’ =o' +c® > a)ﬁ)

Both of the closed-loop poles are strictly in the left-half plane.

ANAANNN

Hence, the closed-loop is guaranteed to be “asymptotically stable”.

\ _
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Example — 2:

Finite-time Temperature Control
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Example: Finite Time
Temperature Control Problem

System dynamics :
6=-a(0-6,)+bu
where

a,b : Constants
€& :Temperature

& : Ambient temperature (Constant = 20°C)
u : Heat input
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Problem formulations

Case — 1.
Cost Function:

1 =
2

tjuzdt
0

o(t,)=6, =30°C

(Hard constraint)

Case — 2:

Cost Function:

Uy
J :% s, (6, —30)2+£u2dt

s. >0: Weightage

Le. O(t,)~30°C
(Soft Constraint)
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Solution:

Solution:
x2(0-0,), 6(0)=0,

X=-ax+bu, x(0)=(6,-6,)=0
: )

HZEUZM( —ax+bu Necessary conditions
X .
A=aAl
8—H—O:>u =—-Ab
5U = = = _b/l
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Solution: Case - 1 (Hard constraint)
a(t—t, —a(t; -t
i e
—aft; —t
0 b )ﬁf

X = —ax—b?1 e Y

Taking laplace transform:

_SX(s)_m_:_ax(s)_bzﬁfeatf (ij
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Solution: Case - 1 (Hard constraint)

X(s):—b%featf( : j

e = e
: 99 c 4 o5
—a 1 a —a
Hence x(t)=-b?> A, e™ z—a(et—e |
Unknown

However, x(t,)=(6, —6,)=10°C
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Solution: Case - 1 (Hard constraint)

e e 2 —at; 1 at; —at;
X(t;)=10=-b"1.e Z_a(e —e )

10 = —( be J(l— e

. —20% = L
X(t)_ b{\%(l_ezatf))e Za(et ¢ t) (eatf_e—atf)
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Solution: Case - 1 (Hard constraint)

lOM
=10

Note :

X(t,) = )

(i.e. The boundary condition is "exactly met".)

Controller:

u(t) =—he

—20a —20ae®

_b\& (1— e )
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Solution: Case - 2 (Soft constraint)
0. ->30°C = x, »10°C.
Hence the cost function Is

ts
=21 (, —10)2 +£u2dt

7
f
A :sf(xf —10) = . — == 0
o
However, we have
2

X(t) = —g—alfe‘atf (e* —e™)
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Solution: Case - 2 (Soft constraint)

Att=t,, Xx(t ):—b—zz (1—e‘2"’“f):£+1o
e f 25 S
2
ie A { s (1—e_2atf ):l—lO
Sl
. —20s.a
o 2a+sfb2(l—e_2atf)
e SR —20s.a
e 2l ) f

2a+ s, b? (1— Ea )
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Solution: Case - 2 (Soft constraint)

u(t)=-ba
. —be_a(tf 1) —20s.a
Jai s o (1— s )
el 10s, abe®
i at Sfb2 at —at
ae ' + (e ' —e )
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Correlation between hard and soft
constraint results

AS S, — oo,
lim u(t)‘ = lim 10abe™
S¢ —>00 S¢ —>00 i aeatf +bz(eatf _e_atf )
Sf
20ae™
= b(eatf _e—atf ) = u(t)‘H,C

1.e. The "soft constraint” problem behaves
like the "hard constraint” problem when s, — .
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