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Fundamental Theorems of Calculus

Theorem — 1: dij f(o)do=f(x), provided f (x) is continuous
X a

of (x,Y)
OX

provided f (x,y) has continuous partial derivative (of /0x)

dy

| d b b
Theorem — 2: &_j f(xy) dy:£

Theorem — 3:

d o (X) o (X) af (X, y) dw dl//
— f(x,y)dy= d 2 f (X, ——1 f(x,
e | r0onay="T FE ey St 1 00)- 01 ()|

provided f,w,,w, have continuous partial derivatives with respect to x
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Calculus of Variations:.
Basic Concepts

Function (to each value of Functional (to each
the independent variable, there function, there is a
IS a corresponding value of the corresponding value of the
dependent variable) dependent variable)
1
x(t)=2t>+3t J(x(t))=[x(t)dt
0
1
= [(2t*+3t)dt =2
Increment of a function Increment of a
functional
AX = X(t+ At t A
X = X (t+At)—x(t) AJ 23 (x(t)+6x(1)) -3 (x(t))
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Example

ty

AJ = J (x(t) + 5x(t)) - I (x(t) J =[[2¢(t)+1]dt

N

2(X(t) + 5x(t))’ }dt [2x (t) +1]dt

5*!_,""

(O +6xO) +1]-[2¢(1) +1])dt

2
2
( (X(t) + 2x(5%() + (1)) )+ J[sz(t)+1])dt
[

AX(1)SX(t) + 2(SX(1)) }

T
I
=
|
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Calculus of Variations:

Basic Concepts

i

Function and its increment

£f() 4

f(tx +Af)

£(t%)

Functional and its increment

ORI

J(x*(t)+0x(t))
J(x=(1)) /
=
- OX(t);
0 x*(.t) x*(t)+ Ox(t) x(t)

Reference: D. S. Naidu, Optimal Control Systems, CRC Press, 2002. /
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Calculus of Variations:
Basic Concepts

Differential of a

function Variation of a

Af* = f (t*+At)— f (t)

[t
dt

2
At + i s !
- 21 dt

functional

df : First deviation

=df + d*f +

At—0 At—0 i

Qdf =(f)At in general

df "= lim Af " = Iim(i

At
il

2
J(At) (an
t S D R +
* / OX
d?f: Second deviation R 227
S6J: First variation
=6) + &%) +

oJ =(§j5x
OX

AJ = J (X(t)+8x(t))—J (x(t))

1(6°]
2!(W](5X>Z :

(N

o
523 Second variation

_
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Calculus of Variations:

Basic Concepts

Result — 1: Result — 2:
Derivative of variation = Variation of derivative Integration of variation = Variation of integration
d d : t t :
o 5x(t)] = a[x(t)— X (t)] I&x(r) e j[x(r)— X (7)} dr
t G
t t :
dx(t)  dx(t) = [x(z)de=[X (r)dr
— — ty ty
dt dt :
= 5{_“ X(r) d z}
=o[x(1)] :
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Exercise

Evaluate the variation of :

¥

J(x(t)) = j | 2x°(t) + 3x(t) + 4 | dt

b
Note:
By ‘variation’, we mean first variation' (by default)
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Solution

Method - 1:
AJ = J (x(t) +5x(t)) — I (x(1))

ts

= j | 2(x(t) + SX(1))° + 3(X(t) + Sx(1)) + 4 |t - j | 2X°(t) + 3x(t) + 4 | dit
=j[2[x2 +2XOX+ (OX)” |+ 3(x+ 5X) + 4—[ 2x° + 3x + 4] |t

ty

:j[4x§x +2(5%)° + 3§x}dt

Ly
:I[4x +3]6xdt  (Neglecting the higher order term)
t
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Solution
Method - 2 ;

o0J :(a—Jj&
OX

= aax{j‘[sz(t) + 3x(t) + 4] dt}5x(t)

ty

Ly
= {j;{[ZXZ +3X + 4]54 dt

ty

(Variation of integral = Integral of variation)
ts

=“4x+3]5xdt
b
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Boundary Conditions

Eixed End Point Problems

(t,, X(t,)): Specified
(t;, X(t,)): Specified

Free End Point Problems x(t)t
Completely free

May be required to lie on a
curve n(t)
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Optimum of a Functional

A functional is said to have a relative optimum at X" (t), if 3£>0

such that for all functions x(t) e Q which satisfy ‘x(t)—x* (t)‘<g,

the increment of J has the "same sign".
1) If AJ=J(x)-J(x")=0, thenJ(X) is arelative (local) "Minimum".
2) If AJ=J(x)-J(x")<0, thenJ(X) is arelative (local) "Maximum".

Note: If the above relationships are satisfied for arbitrarily large & > 0,

then J (x") is a "global optimum".
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Optimum of a Functional

Variation: ox(t)=x(t)—x (t
o ariation: ox(t)=x(t)—x (t)

t—l-v
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Fundamental Theorem of
Calculus of VVariations

For x (t) to be a candidate for optimum,
the following conditions hold good:

1) Necessary Condition: 53 (X"(t),0x(t))=0, V admissible 5x(t)

2) Sufficiency Condition:
5°J >0 (for minimum)

5°J <0 (for maximum)
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Fundamental Lemma

If for every continuous function g (t)
s
[g(t)ox(t)dt=0
Lo

where the variation 5x(t) is continuous int e/ t,,t, |,
then

g(t)=0 Vte|t,t, ]
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Necessary condition of optimality

Ty
Problem: Optimize J = [ L[ x(t), x(t),t]dt by appropriate selection of x(t).

t

Note: t,,t, are fixed.

Solution: Make sure §J =0 for arbitrary 6x(t)

Necessary Conditions:

1) Euler — Lagrange (E-L) Equation

aL_ d (aLj_O
oX dti{ ox

2) Transversality (Boundary) Condition

oL t Note: Part of this equation may
— o0X| =0 | already be satisfied by problem
OX {2 formulation

ADVANCED CONTROL SYSTEM DESIGN

16
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



Proof:

Hint: Use the necessary condition of optimality from the
Fundamental theorem

X, X

Let x'(t), telt,,t,] : Optimumsolution

X (t)+ox(t) :Some adjacentsolution

Then

AJ =J—J*:}L[x(t),X(t),t}dt—jL[x*(t X

= [{L[x(t), % t] [ ]} dt_jAL dt

foeo
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Proof

However at every point t,
AL=L| X"+ 8%, X' + 8%t |- L| X' (t), X'(t), t |

o OX + % oX + HOT
OX XX OX S
Assumption: L Is continuous and smooth in both x and x.
Then, in the limit, AL — 5L:[Z—L5x+%5x}. In that case,
X X

ts
A — 53 =j[5—L5x+5—F§x}dt
OX OX

t
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Proof

However,

[ERNIEE
OX ox ) dt

ty to

(S ) (el
ox ); dt o dt\ ox dt

A& A5l

0
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Proof

Hence,

—OX+ —5x }dt

0-1[%
{ o dt{(@t}ijj T18(2)Joe
1

GL d }5xdt+ (6Lj5x}
| 8X t

Necessary condition of optimality)

0

||
O &y
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Necessary Conditions

7
(%J d %j =0 (Euler-Lagrange Equation)
ox ) dt\ ox

OX

t
2. K%j& =0 (Transversality Condition)

-t

Note :
* Condition (1) must be satisfied regardless of the end condition.

* Part of second equation may already be satisfied by the problem
of specification. i.e. the amount of extra information contained by this
equation varies with the boundary conditions specified.
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Example - 1

it
Problem:  Minimize J = [(¥*+x)dt with x(0)=2, x(1)=3
0
Solution: = ()’(2 + x)
i t

1) E-L Equation: %—i(a—l_‘jzo = 1-2%=0, %= = x(t)=—+ct+g,
ox dt\ ox 2 4

2) Boundary condition: x(0)=c, =2

Transversality condition is
s > e .
C, = 1_Z = automatically satisfied, since
2 0%, =0X%; =0
Hence, x(t)= Lot 2 :
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Example - 2

2, |x(1): Free

1

Problem: Minimize J = [(X*+x)dt with x(0)
0

Solution: = ()’(2 + x)

2
1) E-L Equation: @—i(a—l_‘jzo = 1-2%=0, pa x(t)=t—+c1t+c2
ox dt\ ox 2 4

2) Boundary condition: x(0)=c, =2

.
OX ;. OX |,

t
Zx‘tlez_f +¢ =0, = Cl:_%

tf :1

fey
\ Hence, x(t)=z—5+2 /
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Transversality Condition

t; Ly
General condition: [% 5X} +HL—)’(8IT} 5t} =0
OX t OX

t

Special Cases:
1) Fixed End Points: (t,,%,) and (t,, X, ) are fixed.

No additional information!

2) t, and t, are fixed (free initial and final states)

Ly
{a—L o) x} =0
OX to
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Transversality Condition

Special Cases:

3) t,, X, are fixed (free final time, free final state)

o2 OX, +{L—)’(a—lf}
( OX

4) t,, X, and X, are fixed (free final time)

ox
-5
X

5) t,, X, and t, are fixed (free final state)

oL
Ox

St, =0

t

=0

ts

—

ts
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Transversality Condition

Special Cases:

6) (t,,%, ) is fixed; (t,,X, ) is constrained to lie on a given curve 7(t)

i OX, +{L—>‘<a—|_'} ot, =0. However, oX, :d—77 ot, =n; ot
OX |, OX J|; dt |,
Hence, the transversality condition Is
6—F 7, +{L—>’(8—If} Gl = (el ==
OX |, oX J ;.
oL
i : L+(n—%x)—¢ =0
Finally: { (7—%) 5>'<}tf
ADVANCED CONTROL SYSTEM DESIGN 26

Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore



Example

1
Problem: Minimize J =I(\/1+X2)dt with x(0)=0 and (tf,xf) lie on y(t)=-5t+15
0

Solution: | =+/1+X%°

1) E-L Equation: oL o d (a—j -0
ox dt\ ox

O—i(i\/u X* j =0
dt \ ox

EET
d{ Zx JZO i 2806

dt\ 71+ %2 (1+ %)
2(1+ X )1-( 2% =0
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Example

o d (8L
1) E-L Equation:

o e e e e e e
ox dt axj e

2) Boundary condition:
A= = e

@ [L+(y-%Z]

OX

Ly
el i =heRE (e c,=1/5
Hence, x(t)=t/5

TR R JAle e e S S R S e e e Sy
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Variational Problems in Multiple
Dimensions: Without Constraints
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Multiple Dimension Problems
without constraints

ts
Problem: Optimize J = I L[X (t), X (t),t}dt by appropriate selection of X (t).
to where X 2[x %, - x]

Solution: Make sure §J =0 for arbitrary &X (t)

Necessary Conditions:

1) Euler — Lagrange (E-L) Equation

oL d (aLj_O
oX dt\ oX

2) Transversality (Boundary) Condition

(&) o [l (3] -

0 ty
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Variational Problems with \
Constraints

ts
Optimize : J = jL(X, X,t)dt
b

Subjectto: ®(X, X,t)=0

where

X« . o-lg 0 - O

. _

ADVANCED CONTROL SYSTEM DESIGN 31
Dr. Radhakant Padhi, AE Dept., 11Sc-Bangalore




Variational Problems with
Constraints

Lagrange's Existence Theorem:

3 4., (t) : The above constrained optimization
problem leads to the same solution as the following
unconstrained cost functional

J_:}[L(X,X,t)Jr;tTCD(X,X,t)Jdt

b
L et L*(X,X,t):L(x,x,t)mTcp(x,X,t)
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Variational Problems with
Constraints

Necessary Conditions of Optimality:

(1) E-L Equations:

o0 dlol
(a) —— :
oX  dt| oX
o d L
b= -
ol diloh

\

=0 ( nequations)

=0 ( A equations)

[Note: 2—; — 0 as there is no A term in L*]
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Variational Problems with
Constraints

(2) Transversality Conditions:

(a)

(0)

|

oL

oX

*

0
A

=
j(sx

T 4

oA

i

-t

el a—".
oX

e af
yi
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Variational Problems with
Constraints

E-L Equations:

Varaibles: n + A +1

e (X) (A ()
8X dtl oxX | Boundary Conditions: n + A + 1

(b)( j (X X, t) 0 (same constraint equation)

2) Transversality Conditions: (t,, X, ) fixed, (t,, X, ) free

A
oL 8L :
a) == oX =X = 5t. =0 i equations

ts

(b) L 6t =0  Howevert, isfree = &t #0
so L, =0 (1equation)
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Constraint Equations

Nonholonomic constraints
CD(X o t) —0

Isoperimetric constraints

¥

jq(x,x,t)dtzk

b
One way to get rid of Isoperimetric constraints is to convert
them into Nonholonomic constraints.
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Isoperimetric Constraints
Define:  X,., =q(X,X,t)
Then

Xn+1(tf ) = Xn+1(t0):k
Choose one of x_,(t;) or x_(t,) and fix the other
Let X, (to) =0

Xoaa (L) =K
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Isoperimetric Constraints

summary :

The following additional non-holonomic
constraint is introduced:
X q(X,X,t)
with boundary conditions:
Xn+1(to) =0
Xn+l(tf) =k
The original problem is augmented
with this information and solved.
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