Lecture – 24

Calculus of Variations: An Overview

Dr. Radhakant Padhi

Asst. Professor

Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Fundamental Theorems of Calculus

Theorem – 1:
$$\frac{d}{dx} \int_{a}^{x} f(\sigma) d\sigma = f(x), \text{ provided } f(x) \text{ is continuous}$$

Theorem – 2:
$$\frac{d}{dx} \int_{a}^{b} f(x, y) dy = \int_{a}^{b} \frac{\partial f(x, y)}{\partial x} dy$$

provided f(x, y) has continuous partial derivative $(\partial f / \partial x)$

Theorem – 3:

$$\frac{d}{dx} \int_{\psi_1(x)}^{\psi_2(x)} f(x, y) dy = \int_{\psi_1(x)}^{\psi_2(x)} \frac{\partial f(x, y)}{\partial x} dy + \left[\frac{d\psi_2}{dx} f(x, \psi_2(x)) - \frac{d\psi_1}{dx} f(x, \psi_1(x)) \right]$$

provided f, ψ_1, ψ_2 have continuous partial derivatives with respect to x

 Function (to each value of the independent variable, there is a corresponding value of the dependent variable)

$$x(t) = 2t^3 + 3t$$

Increment of a function

$$\Delta x \triangleq x(t + \Delta t) - x(t)$$

 Functional (to each function, there is a corresponding value of the dependent variable)

$$J(x(t)) = \int_{0}^{1} x(t) dt$$
$$= \int_{0}^{1} (2t^{3} + 3t) dt = 2$$

Increment of a functional

$$\Delta J \triangleq J(x(t) + \delta x(t)) - J(x(t))$$

Example

$$\Delta J = J(x(t) + \delta x(t)) - J(x(t))$$

$$= \int_{t_0}^{t_f} \left[2(x(t) + \delta x(t))^2 + 1 \right] dt - \int_{t_0}^{t_f} \left[2x^2(t) + 1 \right] dt$$

$$= \int_{t_0}^{t_f} \left(\left[2(x(t) + \delta x(t))^2 + 1 \right] - \left[2x^2(t) + 1 \right] \right) dt$$

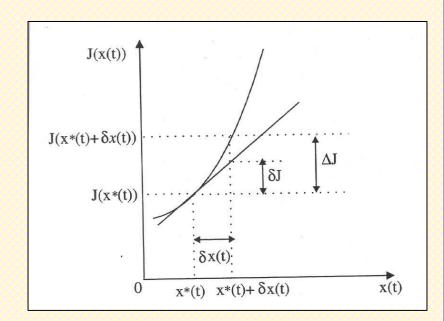
$$= \int_{t_0}^{t_f} \left(\left[2(x^2(t) + 2x(t)\delta x(t) + (\delta x(t))^2 \right) + 1 \right] - \left[2x^2(t) + 1 \right] \right) dt$$

$$= \int_{t_0}^{t_f} \left[4x(t)\delta x(t) + 2(\delta x(t))^2 \right] dt$$

Function and its increment

$f(t^* + \Delta t)$ slope = f $f(t^*)$ Δt $t^* \quad t^* + \Delta t$

Functional and its increment



Reference: D. S. Naidu, Optimal Control Systems, CRC Press, 2002.

Differential of a function

$$\Delta f^* = f\left(t^* + \Delta t\right) - f\left(t^*\right)$$

$$= \left(\frac{df}{dt}\Big|_{t^*}\right) \Delta t + \frac{1}{2!} \left(\frac{d^2 f}{dt^2}\Big|_{t^*}\right) (\Delta t)^2 + \cdots$$

$$df: \text{ First deviation}$$

$$d^2 f: \text{ Second deviation}$$

$$= df + d^2f + \cdots$$

$$df^* = \lim_{\Delta t \to 0} \Delta f^* = \lim_{\Delta t \to 0} \left(\frac{df}{dt} \Big|_{t^*} \right) \Delta t$$

i.e.
$$df = (\dot{f})\Delta t$$
 in general

Variation of a functional

$$\Delta J = J(x(t) + \delta x(t)) - J(x(t))$$

$$= \underbrace{\left(\frac{\partial J}{\partial x}\right)}_{\delta J: \text{ First variation}} \delta x + \underbrace{\frac{1}{2!} \left(\frac{\partial^2 J}{\partial x^2}\right) \left(\delta x\right)^2}_{\delta^2 J: \text{ Second variation}} + \cdots$$

$$=\delta J + \delta^2 J + \cdots$$

$$\delta J = \left(\frac{\partial J}{\partial x}\right) \delta x$$

Result - 1:

Derivative of variation = Variation of derivative

$$\frac{d}{dt} \left[\delta x(t) \right] = \frac{d}{dt} \left[x(t) - x^*(t) \right]$$

$$= \frac{dx(t)}{dt} - \frac{dx^*(t)}{dt}$$

$$=\delta\left[\dot{x}(t)\right]$$

Result - 2:

Integration of variation = Variation of integration

$$\int_{t_0}^{t} \delta x(\tau) d\tau = \int_{t_0}^{t} \left[x(\tau) - x^*(\tau) \right] d\tau$$

$$= \int_{t_0}^{t} x(\tau) d\tau - \int_{t_0}^{t} x^*(\tau) d\tau$$

$$= \delta \left[\int_{t_0}^{t} x(\tau) d\tau \right]$$

Exercise

Evaluate the variation of:

$$J(x(t)) = \int_{t_0}^{t_f} \left[2x^2(t) + 3x(t) + 4\right] dt$$

Note:

By 'variation', we mean 'first variation' (by default)

Solution

Method - 1:

$$\Delta J = J\left(x(t) + \delta x(t)\right) - J\left(x(t)\right)$$

$$= \int_{t_0}^{t_f} \left[2(x(t) + \delta x(t))^2 + 3(x(t) + \delta x(t)) + 4\right] dt - \int_{t_0}^{t_f} \left[2x^2(t) + 3x(t) + 4\right] dt$$

$$= \int_{t_0}^{t_f} \left[2\left[x^2 + 2x\delta x + (\delta x)^2\right] + 3(x + \delta x) + 4 - \left[2x^2 + 3x + 4\right]\right] dt$$

$$= \int_{t_0}^{t_f} \left[4x\delta x + 2(\delta x)^2 + 3\delta x\right] dt$$

$$= \int_{t_0}^{t_f} \left[4x + 3\right] \delta x dt \qquad \text{(Neglecting the higher order term)}$$

Solution

Method - 2:

$$\delta J = \left(\frac{\partial J}{\partial x}\right) \delta x$$

$$= \frac{\partial}{\partial x} \left[\int_{t_0}^{t_f} \left[2x^2(t) + 3x(t) + 4 \right] dt \right] \delta x(t)$$

$$= \left[\int_{t_0}^{t_f} \frac{\partial}{\partial x} \left[2x^2 + 3x + 4 \right] \delta x \right] dt$$

(Variation of integral = Integral of variation)

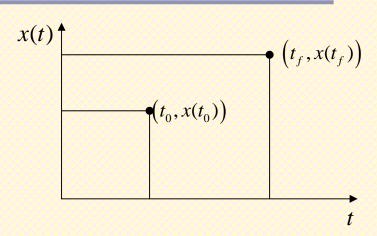
$$= \int_{t_0}^{t_f} \left[4x + 3\right] \delta x \, dt$$

Boundary Conditions

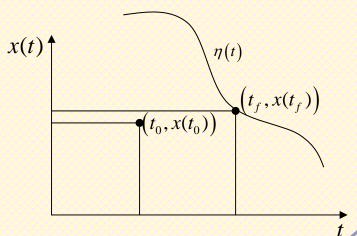
Fixed End Point Problems

$$(t_0, x(t_0))$$
: Specified

 $(t_f, x(t_f))$: Specified



- Free End Point Problems
 - Completely free
 - May be required to lie on a curve $\eta(t)$



Optimum of a Functional

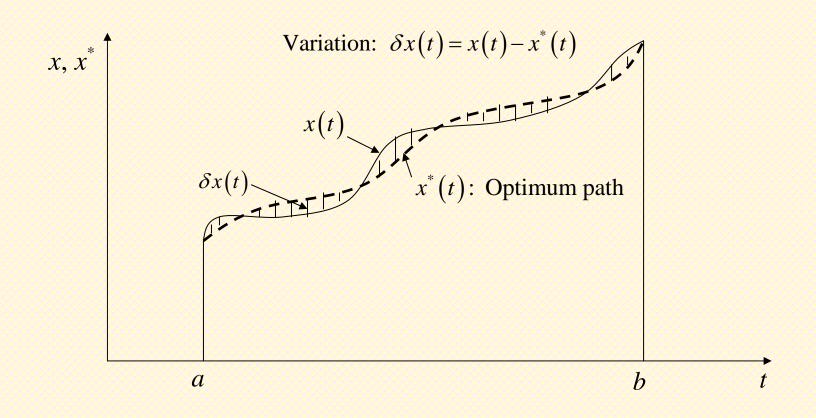
A functional is said to have a relative optimum at $x^*(t)$, if $\exists \varepsilon > 0$ such that for all functions $x(t) \in \Omega$ which satisfy $|x(t) - x^*(t)| < \varepsilon$, the increment of J has the "same sign".

1) If
$$\Delta J = J(x) - J(x^*) \ge 0$$
, then $J(x^*)$ is a relative (local) "Minimum".

2) If
$$\Delta J = J(x) - J(x^*) \le 0$$
, then $J(x^*)$ is a relative (local) "Maximum".

Note: If the above relationships are satisfied for arbitrarily large $\varepsilon > 0$, then $J(x^*)$ is a "global optimum".

Optimum of a Functional



Fundamental Theorem of Calculus of Variations

For $x^*(t)$ to be a candidate for optimum, the following conditions hold good:

- 1) Necessary Condition: $\delta J(x^*(t), \delta x(t)) = 0$, \forall admissible $\delta x(t)$
- 2) Sufficiency Condition:

$$\delta^2 J > 0$$
 (for minimum)

$$\delta^2 J < 0$$
 (for maximum)

Fundamental Lemma

If for every continuous function g(t)

$$\int_{t_0}^{t_f} g(t) \, \delta x(t) \, dt = 0$$

where the variation $\delta x(t)$ is continuous in $t \in [t_0, t_f]$, then

$$g(t) = 0 \quad \forall t \in [t_0, t_f]$$

Necessary condition of optimality

Problem: Optimize $J = \int_{t_0}^{t_f} L[x(t), \dot{x}(t), t] dt$ by appropriate selection of x(t).

Note: t_0, t_f are fixed.

Solution: Make sure $\delta J = 0$ for arbitrary $\delta x(t)$

Necessary Conditions:

1) Euler – Lagrange (E-L) Equation

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0$$

2) Transversality (Boundary) Condition

$$\left[\frac{\partial L}{\partial \dot{x}} \delta x\right]_{t_0}^{t_f} = 0$$

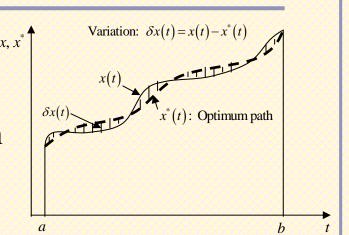
Note: Part of this equation may already be satisfied by problem formulation

Proof:

Hint: Use the necessary condition of optimality from the Fundamental theorem

Let $x^*(t)$, $t \in [t_0, t_f]$: Optimum solution

$$x^*(t) + \delta x(t)$$
 : Some adjacent solution



Then

$$\Delta J = J - J^* = \int_{t_0}^{t_f} L[x(t), \dot{x}(t), t] dt - \int_{t_0}^{t_f} L[x^*(t), \dot{x}^*(t), t] dt$$

$$= \int_{t_0}^{t_f} \left\{ L[x(t), \dot{x}(t), t] - L[x^*(t), \dot{x}^*(t), t] \right\} dt = \int_{t_0}^{t_f} \Delta L dt$$

Proof

However at every point t,

$$\Delta L = L \left[x^* + \delta x, \dot{x}^* + \delta \dot{x}, t \right] - L \left[x^* (t), \dot{x}^* (t), t \right]$$

$$= \frac{\partial L}{\partial x} \Big|_{x^*, \dot{x}_f^*} \delta x + \frac{\partial L}{\partial \dot{x}} \Big|_{x^*, \dot{x}_f^*} \delta \dot{x} + HOT$$

Assumption: L is continuous and smooth in both x and \dot{x} .

Then, in the limit,
$$\Delta L \rightarrow \delta L = \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \delta \dot{x} \right]$$
. In that case,

$$\Delta J \to \delta J = \int_{t_0}^{t_f} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \delta \dot{x} \right] dt$$

Proof

However,

$$\int_{t_0}^{t_f} \left[\frac{\partial L}{\partial \dot{x}} \delta \dot{x} \right] dt = \int_{t_0}^{t_f} \left[\left(\frac{\partial L}{\partial \dot{x}} \right) \frac{d(\delta x)}{dt} \right] dt$$

$$= \left[\left(\frac{\partial L}{\partial \dot{x}} \right) \int_{t_0}^{t_f} \frac{d(\delta x)}{dt} dt \right]_{t_o}^{t_f} - \int_{t_0}^{t_f} \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] \int \left[\frac{d(\delta x)}{dt} dt \right] dt$$

$$= \left[\left(\frac{\partial L}{\partial \dot{x}} \right) \delta x \right]_{t_o}^{t_f} - \int_{t_0}^{t_f} \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] \delta x dt$$

Proof

Hence,

$$\delta J = \int_{t_0}^{t_f} \left[\frac{\partial L}{\partial x} \delta x + \frac{\partial L}{\partial \dot{x}} \delta \dot{x} \right] dt$$

$$= \int_{t_0}^{t_f} \left[\frac{\partial L}{\partial x} \right] \delta x dt + \left[\left(\frac{\partial L}{\partial \dot{x}} \right) \delta x \right]_{t_0}^{t_f} - \int_{t_0}^{t_f} \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] \delta x dt$$

$$= \int_{t_0}^{t_f} \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] \delta x dt + \left[\left(\frac{\partial L}{\partial \dot{x}} \right) \delta x \right]_{t_0}^{t_f}$$

$$= 0 \quad \text{(Necessary condition of optimality)}$$

Necessary Conditions

1.
$$\left(\frac{\partial L}{\partial x}\right) - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}}\right) = 0$$
 (Euler-Lagrange Equation)

2.
$$\left[\left(\frac{\partial L}{\partial \dot{x}} \right) \delta x \right]_{t_0}^{t_f} = 0$$
 (Transversality Condition)

Note:

- * Condition (1) must be satisfied regardless of the end condition.
- * Part of second equation may already be satisfied by the problem of specification. i.e. the amount of extra information contained by this equation varies with the boundary conditions specified.

Example - 1

Problem: Minimize
$$J = \int_{0}^{1} (\dot{x}^2 + x) dt$$
 with $x(0) = 2$, $x(1) = 3$

Solution: $L = (\dot{x}^2 + x)$

1) E-L Equation:
$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0 \implies 1 - 2\ddot{x} = 0, \quad \ddot{x} = \frac{1}{2} \implies x(t) = \frac{t^2}{4} + c_1 t + c_2$$

2) Boundary condition: $x(0) = c_2 = 2$

$$x(1) = \frac{1}{4} + c_1 + 2 = 3$$

$$c_1 = 1 - \frac{1}{4} = \frac{3}{4}$$
Hence, $x(t) = \frac{t^2}{4} + \frac{3t}{4} + 2$

Transversality condition is automatically satisfied, since $\delta x_0 = \delta x_f = 0$

Example - 2

Problem: Minimize
$$J = \int_{0}^{1} (\dot{x}^2 + x) dt$$
 with $x(0) = 2$, $x(1)$: Free

Solution:
$$L = (\dot{x}^2 + x)$$

1) E-L Equation:
$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0 \implies 1 - 2\ddot{x} = 0, \quad \ddot{x} = \frac{1}{2} \implies x(t) = \frac{t^2}{4} + c_1 t + c_2$$

2) Boundary condition:
$$x(0) = c_2 = 2$$

$$\frac{\partial L}{\partial \dot{x}}\Big|_{t_f} \delta x_f = 0, \quad \Rightarrow \quad \frac{\partial L}{\partial \dot{x}}\Big|_{t_f} = 0 \quad \left(\because \delta x_f \neq 0\right)$$

$$2\dot{x}\Big|_{t_f=1} = \frac{t_f}{2}\Big|_{t_f=1} + c_1 = 0, \implies c_1 = -\frac{1}{2}$$

Hence,
$$x(t) = \frac{t^2}{4} - \frac{t}{2} + 2$$

Transversality Condition

General condition:

$$\left[\frac{\partial L}{\partial \dot{x}} \delta x \right]_{t_0}^{t_f} + \left[\left\{ L - \dot{x} \frac{\partial L}{\partial \dot{x}} \right\} \delta t \right]_{t_0}^{t_f} = 0$$

Special Cases:

- 1) Fixed End Points: (t_0, x_0) and (t_f, x_f) are fixed. No additional information!
- 2) t_0 and t_f are fixed (free initial and final states)

$$\left[\frac{\partial L}{\partial \dot{x}} \delta x\right]_{t_0}^{t_f} = 0$$

Transversality Condition

Special Cases:

3) t_0 , x_0 are fixed (free final time, free final state)

$$\left. \frac{\partial L}{\partial \dot{x}} \right|_{t_f} \delta x_f + \left\{ L - \dot{x} \frac{\partial L}{\partial \dot{x}} \right\} \right|_{t_f} \delta t_f = 0$$

4) t_0 , x_0 and x_f are fixed (free final time)

$$\left\{ L - \dot{x} \frac{\partial L}{\partial \dot{x}} \right\} \bigg|_{t_f} = 0$$

5) t_0 , x_0 and t_f are fixed (free final state)

$$\left. \frac{\partial L}{\partial \dot{x}} \right|_{t_f} = 0$$

Transversality Condition

Special Cases:

6) (t_0, x_0) is fixed; (t_f, x_f) is constrained to lie on a given curve $\eta(t)$

$$\left. \frac{\partial L}{\partial \dot{x}} \right|_{t_f} \delta x_f + \left\{ L - \dot{x} \frac{\partial L}{\partial \dot{x}} \right\} \bigg|_{t_f} \delta t_f = 0. \quad \text{However, } \delta x_f = \frac{d\eta}{dt} \bigg|_{t_f} \delta t_f = \dot{\eta}_f \delta t_f$$

Hence, the transversality condition is

$$\left[\frac{\partial L}{\partial \dot{x}} \Big|_{t_f} \dot{\eta}_f + \left\{ L - \dot{x} \frac{\partial L}{\partial \dot{x}} \right\} \Big|_{t_f} \right] \delta t_f = 0 \qquad \left(\delta t_f \neq 0 \right)$$

Finally:
$$\left\{ L + (\dot{\eta} - \dot{x}) \frac{\partial L}{\partial \dot{x}} \right\} \Big|_{t_f} = 0$$

Example

Problem: Minimize $J = \int_{0}^{1} \left(\sqrt{1+\dot{x}^2}\right) dt$ with x(0) = 0 and (t_f, x_f) lie on y(t) = -5t + 15

Solution: $L = \sqrt{1 + \dot{x}^2}$

1) E-L Equation:
$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0$$

$$0 - \frac{d}{dt} \left(\frac{\partial}{\partial \dot{x}} \sqrt{1 + \dot{x}^2} \right) = 0$$

$$\frac{d}{dt} \left(\frac{\cancel{Z} \dot{x}}{\cancel{Z} \sqrt{1 + \dot{x}^2}} \right) = 0 \implies \frac{\sqrt{1 + \dot{x}^2} \, \ddot{x} - \dot{x} \frac{2 \, \dot{x} \, \ddot{x}}{2\sqrt{1 + \dot{x}^2}}}{\left(1 + \dot{x}^2\right)} = 0$$

$$2\left(1 + \dot{x}^2\right) \ddot{x} - \left(2 \, \dot{x}^2 \, \ddot{x}\right) = 0$$

Example

1) E-L Equation:
$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0 \implies \ddot{x} = 0 \implies x(t) = c_1 t + c_2$$

2) Boundary condition:

$$(1) \quad x(0) = c_2 = 0 \qquad \Rightarrow \qquad x(t) = c_1 t$$

(2)
$$\left[L + (\dot{y} - \dot{x}) \frac{\partial L}{\partial \dot{x}} \right]_{t_f} = 0$$

$$-5\dot{x}_f + 1 = 0 \quad \Rightarrow \quad -5c_1 + 1 = 0 \quad \Rightarrow \quad c_1 = 1/5$$
Hence, $x(t) = t/5$
To find t_f , $t_f/5 = -5t_f + 15 \quad \Rightarrow \quad t_f = 75/26$

Variational Problems in Multiple Dimensions: Without Constraints

Dr. Radhakant Padhi

Asst. Professor

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

Multiple Dimension Problems without constraints

Problem: Optimize $J = \int_{t_0}^{t_f} L[X(t), \dot{X}(t), t] dt$ by appropriate selection of X(t). where $X \triangleq \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$

Solution: Make sure $\delta J = 0$ for arbitrary $\delta X(t)$

Necessary Conditions:

1) Euler – Lagrange (E-L) Equation

$$\boxed{\frac{\partial L}{\partial X} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{X}} \right) = 0}$$

2) Transversality (Boundary) Condition

$$\left[\left(\frac{\partial L}{\partial \dot{X}} \right)^T \delta X \right]_{t_0}^{t_f} + \left[\left\{ L - \dot{X}^T \left(\frac{\partial L}{\partial \dot{X}} \right) \right\} \delta t \right]_{t_0}^{t_f} = 0$$

Optimize:
$$J = \int_{t_0}^{t_f} L(X, \dot{X}, t) dt$$

Subject to:
$$\Phi(X, \dot{X}, t) = 0$$

where

$$X \triangleq \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T, \quad \Phi \triangleq \begin{bmatrix} \varphi_1 & \varphi_2 & \cdots & \varphi_{\tilde{n}} \end{bmatrix}^T$$

Lagrange's Existence Theorem:

 $\exists \ \lambda_{\tilde{n} \times 1}(t)$: The above constrained optimization problem leads to the same solution as the following unconstrained cost functional

$$\overline{J} = \int_{t_0}^{t_f} \left[L(X, \dot{X}, t) + \lambda^T \Phi(X, \dot{X}, t) \right] dt$$

Let
$$L^*(X, \dot{X}, t) = L(X, \dot{X}, t) + \lambda^T \Phi(X, \dot{X}, t)$$

Necessary Conditions of Optimality:

(1) E-L Equations:

(a)
$$\frac{\partial L^*}{\partial X} - \frac{d}{dt} \left[\frac{\partial L^*}{\partial \dot{X}} \right] = 0$$
 (n equations)

(b)
$$\frac{\partial L^*}{\partial \lambda} - \frac{d}{dt} \left[\frac{\partial L^*}{\partial \dot{\lambda}} \right] = 0 \ (\tilde{n} \text{ equations})$$

Note:
$$\frac{\partial L^*}{\partial \dot{\lambda}} = 0$$
 as there is no $\dot{\lambda}$ term in L^*

(2) Transversality Conditions:

(a)
$$\left[\left(\frac{\partial L^*}{\partial \dot{X}} \right)^T \delta X \right]_{t_o}^{t_f} + \left[\left\{ L^* - \dot{X}^T \left(\frac{\partial L^*}{\partial \dot{X}} \right) \right\} \delta t \right]_{t_o}^{t_f} = 0$$

(b)
$$\left[\left(\frac{\partial L^*}{\partial \dot{\lambda}} \right)^T \delta \lambda \right]_{t_o}^{t_f} + \left[\left\{ L^* - \dot{\lambda}^T \left(\frac{\partial L^*}{\partial \dot{\lambda}} \right) \right\} \delta t \right]_{t_o}^{t_f} = 0;$$

E-L Equations:

1) (a)
$$\left(\frac{\partial L^*}{\partial X}\right) - \frac{d}{dt} \left(\frac{\partial L^*}{\partial \dot{X}}\right) = 0$$

Varaibles:
$$n + \tilde{n} + 1$$

$$(X) \quad (\lambda) \quad (t_f)$$
Boundary Conditions: $n + \tilde{n} + 1$

(b)
$$\left(\frac{\partial L^*}{\partial \lambda}\right) = \Phi(X, \dot{X}, t) = 0$$
 (same constraint equation)

2) Transversality Conditions: (t_0, X_0) fixed, (t_f, X_f) free

(a)
$$\left(\frac{\partial L^*}{\partial \dot{X}}\right)_{t_f}^T \delta X_f + \left[L^* - \dot{X}^T \left(\frac{\partial L^*}{\partial \dot{X}}\right)\right]_{t_f} \delta t_f = 0$$
 (\tilde{n} equations)

(b)
$$L_{t_f}^* \delta t_f = 0$$
 However t_f is free $\Rightarrow \delta t_f \neq 0$
so $L_{t_f}^* = 0$ (1 equation)

Constraint Equations

Nonholonomic constraints

$$\Phi(X,\dot{X},t)=0$$

Isoperimetric constraints

$$\int_{t_0}^{t_f} q(X, \dot{X}, t) dt = k$$

One way to get rid of Isoperimetric constraints is to convert them into Nonholonomic constraints.

Isoperimetric Constraints

Define:
$$\dot{x}_{n+1} = q(X, \dot{X}, t)$$

Then

$$\int_{t_0}^{t_f} \dot{x}_{n+1} dt = k$$

$$x_{n+1}(t_f) - x_{n+1}(t_0) = k$$

Choose one of $x_{n+1}(t_f)$ or $x_{n+1}(t_0)$ and fix the other

Let
$$x_{n+1}(t_0) = 0$$

 $x_{n+1}(t_f) = k$

Isoperimetric Constraints

Summary:

The following additional non-holonomic constraint is introduced:

$$\dot{X}_{n+1} = q(X, \dot{X}, t)$$

with boundary conditions:

$$x_{n+1}(t_0) = 0$$

$$x_{n+1}(t_f) = k$$

The original problem is augmented with this information and solved.

References

T. F. Elbert, Estimation and Control Systems,
 Von Nostard Reinhold, 1984.

 D. S. Naidu, Optimal Control Systems, CRC Press, 2002.

