<u>Lecture – 23</u>

Static Optimization: An Overview

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Topics

- Unconstrained optimization
- Constrained optimization with equality constraints
- Constrained optimization with inequality constraints
- Numerical examples

Unconstrained Optimization

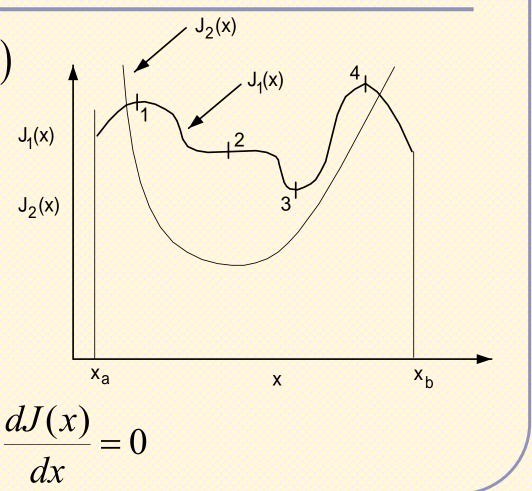
Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Static Optimization

Observation for: $J_1(x)$ Point 1: Local maximum Point 2: Point of inflexion Point 3: Local minimum Point 4: Local maximum

Point 3: Global minimum Point 4: Global maximum

At all minima/maxima:



Scalar Case:

Performance Index J(x): An analytic function x of

Taylor series:

$$\left[J\left(x^* + \Delta x\right) - J\left(x^*\right)\right] = \frac{dJ}{dx}\Big|_{x=x^*} \Delta x + \frac{1}{2!} \frac{d^2 J}{dx^2}\Big|_{x=x^*} \left(\Delta x\right)^2 + \cdots$$

Necessary Condition:

If $J(x^*)$ is a minimum irrespective of the sign of Δx ,

then

$$\left. \frac{dJ}{dx} \right|_{x=x^*} = 0$$

Sufficient Condition:

$$\begin{bmatrix} J\left(x^* + \Delta x\right) - J\left(x^*\right) \end{bmatrix} = \frac{1}{2!} \frac{d^2 J}{dx^2} \Big|_{x=x^*} (\Delta x)^2 + \text{ HOT}$$
$$\begin{bmatrix} J\left(x^* + \Delta x\right) > J\left(x^*\right) \end{bmatrix}, \text{ irrespective of the sign of } \Delta x$$
$$\text{if } \frac{d^2 J}{dx^2} \Big|_{x=x^*} > 0 \quad \text{(sufficiency condition for local minimum)}$$
$$\text{Similarly, if } \frac{d^2 J}{dx^2} \Big|_{x=x^*} < 0, \text{ it leads to a local maximum}$$

Q-1: What if
$$\frac{dJ}{dx}\Big|_{x=x^*} = \frac{d^2J}{dx^2}\Big|_{x=x^*} = 0$$
?

Answer:

$$J(x^* + \Delta x) - J(x^*) = \frac{1}{3!} \frac{d^3 J}{dx^3} \Big|_{x=x^*} (\Delta x)^3 + \frac{1}{4!} \frac{d^4 J}{dx^4} \Big|_{x=x^*} (\Delta x)^4 + \cdots$$

Necessary condition

$$\frac{d^{3}J}{dx^{3}}\Big|_{x=x^{*}} = 0$$
$$d^{4}J\Big|_{x=x^{*}} = 0$$

Sufficient condition

$$> 0$$
 (for minimization)

ADVANCED CONTROL SYSTEM DESIGN Dr. Radhakant Padhi, AE Dept., IISc-Bangalore

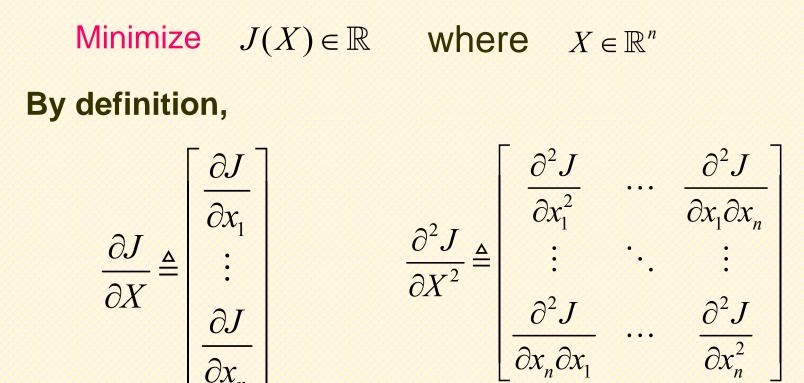
 dx^4

Q-2: What if
$$\frac{dJ}{dx}\Big|_{x=x^*} = \frac{d^2J}{dx^2}\Big|_{x=x^*} = 0$$
 but $\frac{d^3J}{dx^3}\Big|_{x=x^*} \neq 0$?
Then $x = x^*$ is a point of inflexion
Example - 1: $J = x^4$
 $\frac{dJ}{dx} = 4x^3 = 0$
 $x^* = 0,0,0$
 $\frac{d^2J}{dx^2}\Big|_{x=0} = 12x^{*2} = 0, \quad \frac{d^3J}{dx^3}\Big|_{x=0} = 24x^* = 0, \quad \frac{d^4J}{dx^4}\Big|_{x=0} = 24 > 0$
minimum

Example - 2: $J = x^3$ $dJ/dx = 3x^2 = 0$ $\Rightarrow x^* = 0, 0$ $\frac{d^2 J}{dx^2}\Big|_{x^*=0} = 6x^* = 0, \quad \frac{d^3 J}{dx^3}\Big|_{x^*=0} = 6 \neq 0$

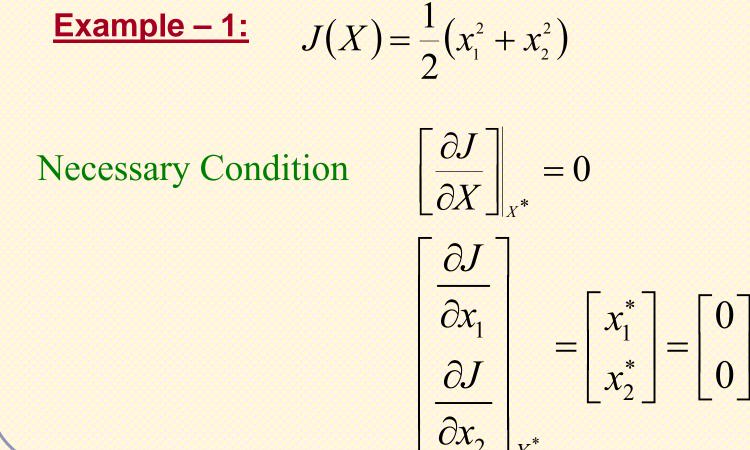
Hence, x^* is a point of inflexion.

Vector case



 $J(X) = J(X^* + \Delta X)$ $=J(X^*)+\left(\frac{\partial J}{\partial X}\Big|_{u^*}\right)\Delta X+\frac{1}{2!}(\Delta X)^T\left(\frac{\partial^2 J}{\partial X^2}\Big|_{u^*}\right)\Delta X+\ldots$ For minimization, $J(X^* + \Delta X) - J(X^*) > 0$ (irrespective of sign of ΔX) Necessary Condition: $\left[\frac{\partial J}{\partial Y}\right] = 0$ Sufficient Condition: $\left\| \frac{\partial^2 J}{\partial X^2} \right\| > 0$ (positive definite)

Remark: Further Conditions are difficult to use in practice!



Sufficient Condition:

$$\begin{bmatrix} \frac{\partial^2 J}{\partial X^2} \end{bmatrix}_{X^*} = \begin{bmatrix} \frac{\partial^2 J}{\partial x_1^2} & \frac{\partial^2 J}{\partial x_1 \partial x_2} \\ \frac{\partial^2 J}{\partial x_2 \partial x_1} & \frac{\partial^2 J}{\partial x_2^2} \end{bmatrix}_{X^*} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Eigenvalues: 1,1 at $X = X^*$

 $\left[\frac{\partial^2 J}{\partial X^2}\right]_{x^*} > 0$ (positive definite). So $X^* = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ is a minimum point

Example – 2:
$$J(x) = \frac{1}{2}(x_1^2 - x_2^2)$$

Solution:

 ∂

$$\frac{\partial J}{\partial X} = 0 \quad \Rightarrow \quad X^* = \begin{bmatrix} x_1^* \\ -x_2^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\frac{\partial^2 J}{\partial X^2} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 Eigenvalues: 1,-1

i.e. $\frac{\partial^2 J}{\partial X^2}$ is neither positive definite, nor negetive definite

Hence X = 0 is a 'saddle point'.

Constrained Optimization with Equality Constraints

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Constrained Optimization: Equality Constraint

Problem: Minimize $J(X) \in \mathbb{R}$ $(X \in \mathbb{R}^n)$ Subject to f(X) = 0where, $f(X) = [f_1(X) \cdots f_m(X)]^T \in \mathbb{R}^m$

Solution Procedure:

Formulate an augmented cost function

$$\overline{J}(X,\lambda) \triangleq J(X) + \lambda^T f(X)$$

Constrained Optimization: Equality Constraint

Necessary Conditions:

$$\frac{\partial \overline{J}}{\partial X} = \frac{\partial J}{\partial X} + \left[\frac{\partial f}{\partial X}\right]^T \lambda = 0 \qquad \Leftarrow n \text{ equations}$$
$$\frac{\partial \overline{J}}{\partial \lambda} = f(X) = 0 \qquad \Leftarrow m \text{ equations}$$
Hence, it lead to $(n+m)$ equations

with (n+m) variables. Solve it!

Constrained Optimization with Equality Constraint: Another Example

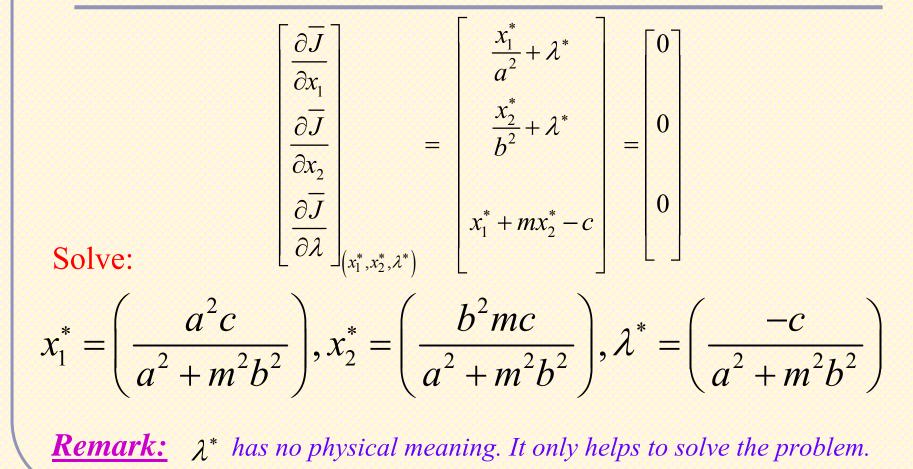
Minimize
$$J(X) = \frac{1}{2} \left[\left(\frac{x_1}{a} \right)^2 + \left(\frac{x_2}{b} \right)^2 \right]$$

Subject to $x_1 + mx_2 - c = 0$ where a, b, m, c are Constants

Solution:

$$\overline{J} = \frac{1}{2} \left[\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} \right] + \lambda \left(x_1 + mx_2 - c \right)$$

Constrained Optimization with Equality Constraint: Another Example



Constrained Optimization with Equality Constraint: Sufficiency Condition

If the equation

$$\begin{bmatrix} \frac{\partial^2 \overline{J}}{\partial X^2} - I\sigma \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial X} \end{bmatrix}^T \\ \begin{bmatrix} \frac{\partial f}{\partial X} \end{bmatrix} = 0$$

has only positive roots $\sigma_i \Rightarrow$ Minimum

has only negative roots $\sigma_i \Rightarrow$ Maximum

Example – 1

Problem:
$$J = \frac{1}{2} \left(x_1^2 + x_2^2 \right), \quad f(x_1, x_2) = x_1 - x_2 - 5 = 0$$

Solution:

Necessary condition:

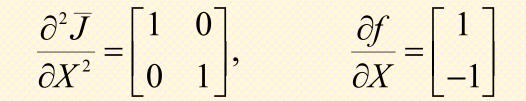
$$\overline{J} = \frac{1}{2} \left(x_1^2 + x_2^2 \right) + \lambda \left(x_1 - x_2 - 5 \right)$$

ion:
$$\begin{bmatrix} x_1 + \lambda \\ x_2 - \lambda \\ x_1 - x_2 - 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\lambda = -\frac{5}{2}, x_1 = \frac{5}{2}, x_2 = -\frac{5}{2}$$

Example – 1

Sufficient condition:



$$\det \left[\begin{bmatrix} 1 - \sigma & 0 & 1 \\ 0 & 1 - \sigma & -1 \\ 1 & -1 & 0 \end{bmatrix} \right] = 0 \implies \sigma = 1 > 0$$

The Solution $x_1 = \frac{5}{2}$, $x_2 = -\frac{5}{2}$ is a minimum.

Example - 1: Some Remarks

In this example, x_1 , x_2 and λ do not appear in the equation for σ . Moreover, the solution is the 'only solution'. Hence, the result is **'global'.**

In general, however σ will be a function of *X* and λ . Hence, various conclusions have to be derived on case-to-case basis.

Example – 2

 $J = x_1 - x_2^2$, $f(X) = x_1^2 + x_2^2 - 1 = 0$ Problem: $\overline{J} = x_1 - x_2^2 + \lambda (x_1^2 + x_2^2 - 1)$ Solution: $\begin{vmatrix} 1+2\lambda x_{1} \\ 2x_{2}(\lambda-1) \\ x_{1}^{2}+x_{2}^{2}-1 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ Necessary condition: Sufficient condition: $\frac{\partial^2 \overline{J}}{\partial X^2} = \begin{bmatrix} 2\lambda & 0 \\ 0 & 2(\lambda - 1) \end{bmatrix}, \frac{\partial f}{\partial X} = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix}$

Example – 2

$$\det \begin{bmatrix} 2\lambda - \sigma & 0 & 2x_1 \\ 0 & 2\lambda - 2 - \sigma & 2x_2 \\ 2x_1 & 2x_2 & 0 \end{bmatrix} = 0$$

X_1	<i>X</i> ₂	λ	σ	Conclusion
1	0	-1/2	- 3	Maximum
-1	0	1/2	-1	Maximum
-1/2	1.73	1	3/2	Minimum
-1/2	-1.73	1	3/2	Minimum

Constrained Optimization with Inequality Constraints

Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Constrained Optimization with Inequality Constraints: A naïve approach

<u>**Remark:**</u> One way of dealing with inequality constraints for the variables is as follows:

Let $x_{i_{\min}} \le x_i \le x_{i_{\max}}$ (Important for control problems) Replace: $x_i = x_{i_{\min}} + (x_{i_{\max}} - x_{i_{\min}}) \sin^2 \alpha_i$

Consider α_i as a free variable.

Optimization with Inequality Constraints

Problem: Maximize / Minimize: $J(X) \in \mathbb{R}, X \in \mathbb{R}^{n}$ Subject to: $g(X) \triangleq \begin{bmatrix} g_{1}(X) \\ \vdots \\ g_{m}(X) \end{bmatrix} \leq \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$

Solution: First, introduce "slack variables" μ_1, \dots, μ_m to convert ineqaulity constraints to equality constraints as follows:

$$f_g(X,\mu) \triangleq \begin{bmatrix} g_1(X) + \mu_1^2 \\ \vdots \\ g_m(X) + \mu_m^2 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Then follow the routine procedure for the equality constraints.

Optimization with Inequality Constraints

Augmented PI:
$$\overline{J}(X,\lambda,\mu) = J(X) + \sum_{j=1}^{m} \left[\lambda_j g_j(X) + \lambda_j \mu_j^2\right]$$

Necessary Conditions:

$$\frac{\partial \overline{J}}{\partial x_i} = \frac{\partial J}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} = 0, \quad i = 1, \dots, n \qquad (n \text{ equations})$$
$$\frac{\partial \overline{J}}{\partial \lambda_j} = g_j (X) + \mu_j^2 = 0, \qquad j = 1, \dots, m \qquad (m \text{ equations})$$
$$\frac{\partial \overline{J}}{\partial \mu_j} = 2\lambda_j \mu_j = 0, \qquad j = 1, \dots, m \qquad (m \text{ equations})$$

Optimization with Inequality Constraints

$$\frac{\partial \overline{J}}{\partial \lambda_{j}} = g_{j}(X) + \mu_{j}^{2} = 0$$
$$g_{j}(X) = -\mu_{j}^{2}$$
$$\lambda_{j}g_{j} = -\mu_{j}(\lambda_{j}\mu_{j})$$

$$\frac{\partial \overline{J}}{\partial \mu_j} = 2\lambda_j \mu_j = 0$$

Hence, $\lambda_i g_i = 0$

This leads to the conclusion that either $\lambda_j = 0$ or $g_j = 0$ i.e. If a constraint is strictly an inequality

constraint, then the problem can be solved without considering it. Otherwise, the problem can be solved by considering it as an equality constraint.

Necessary Conditions (Kuhn-Tucker Conditions)

$$\frac{\partial \overline{J}}{\partial x_i} = \frac{\partial J}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j}{\partial x_i} = 0, \quad i = 1, \dots, n \quad (n \text{ equations})$$
$$\lambda_j g_j (X) = 0, \qquad j = 1, \dots, m \quad (m \text{ equations})$$

For
$$J(X)$$
 to be MINIMUM
if $g_j(X) \le 0$ then $\lambda_j \ge 0$
if $g_j(X) \ge 0$ then $\lambda_j \le 0$

For J(X) to be MAXIMUM if $g_j(X) \le 0$ then $\lambda_j \le 0$ if $g_j(X) \ge 0$ then $\lambda_j \ge 0$

(opposite sign)

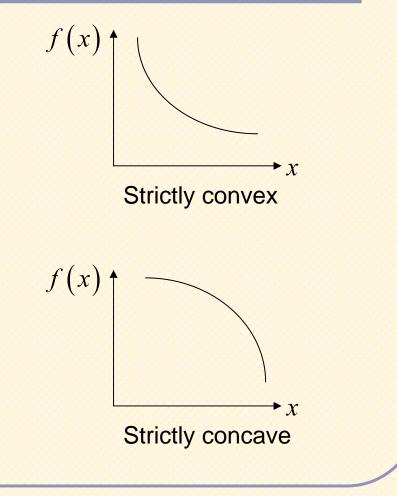
(same sign)

Optimization with Inequality Constraints: Comments

- One should explore all possibilities in the Kuhn-Tucker conditions to arrive at an appropriate conclusion
- Kuhn-Tucker conditions are only "necessary conditions"
- Sufficiency check demands the concept of "convexity"

Convex/Concave Function f(x)

- A function is called convex, if a straight line drawn between any two points on the surface generated by the function lies completely above or on the surface.
- If the line lies strictly above the surface, then the function is called strictly convex.
- If the line lies below the surface, then the function is called a concave.



Result for Local Convexity/Concavity of f(X) at X*

Definition	$\left[\frac{\partial^2 f}{\partial X^2}\right]_{X^*}$	Eigenvalues
Strictly convex	Positive definite	$\lambda_i > 0, \forall i$
Convex	Positive Semi-definite	$\lambda_i \geq 0, \forall i$
Strictly concave	Negative definite	$\lambda_i < 0, \forall i$
Concave	Negative Semi-definite	$\lambda_i \leq 0, \forall i$
No classification	Indefinite	Some $\lambda_i > 0$. Rest are ≤ 0

Conditions for which Kuhn-Tucker Conditions are also Sufficient

Condition	J(X)	All $g_j(X)$
Maximum	Strictly concave	Convex
Minimum	Strictly convex	Convex

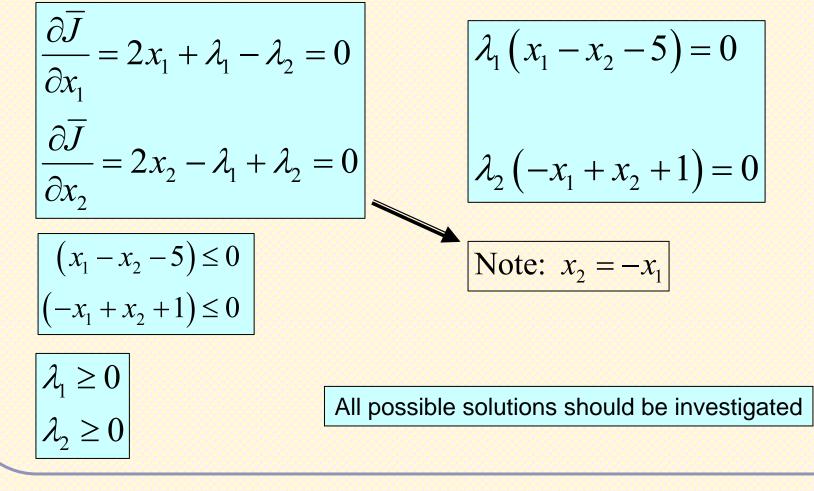
Example

Problem: Minimize: $J(X) = (x_1^2 + x_2^2)$ Subject to: $(x_1 - x_2) \le 5$ $(x_1 - x_2) \ge 1$

Solution: $g_1(X) = (x_1 - x_2 - 5) \le 0$ $g_2(X) = (-x_1 + x_2 + 1) \le 0$

$$\overline{J} = (x_1^2 + x_2^2) + \lambda_1 (x_1 - x_2 - 5) + \lambda_2 (-x_1 + x_2 + 1)$$

Example: Kuhn-Tucker Conditions



Feasible Solution of Kuhn-Tucker Conditions

• **Case – 1**:
$$\lambda_1 = 0, \ \lambda_2 \neq 0, \ \text{(Feasible:)} \ x_1 = \frac{1}{2}, \ x_2 = -\frac{1}{2}$$

• Case – 2:
$$\lambda_1 = 0$$
, $\lambda_2 = 0$, Not Feasible: $x_1 = x_2 = 0$

• **Case – 3**: $\lambda_1 \neq 0$, $\lambda_2 = 0$, Not Feasible: $x_1 = \frac{5}{2}$, $x_2 = -\frac{5}{2}$

• Case – 4: $\lambda_1 \neq 0$, $\lambda_2 \neq 0$, Not Feasible: No Solution!

Sufficiency condition

 $J(X) = (x_1^2 + x_2^2)$ is strictly convex. $g_1(X)$, $g_2(X)$ are also convex.

Hence, the Kuhn-Tucker conditions are both Necessary and Sufficient.

Moreover, $\frac{\partial^2 J}{\partial X^2} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} > 0$ and it does not depend on the value of X. Hence, $X^* = \begin{bmatrix} 1/2 & -1/2 \end{bmatrix}^T$ is the GLOBAL minimum!

References

 T. F. Elbert, *Estimation and Control Systems*, Von Nostard Reinhold, 1984.

• S. S. Rao, *Optimization Theory and Applications*, Wiley, Second Edition, 1984.

