Lect - 29

Prof. Bhaskar Roy, Prof. A M Pradeep **Department of Aerospace Engineering, IIT Bombay**

Axial Flow Turbine

Blade design - Profiles

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Axial Turbine Design Considerations :

1) Selection of design point – from engine cycle 2) Selection of fundamental design parameters π_{0T} , m_{gas} , D_{max} , T_g , P_a , T_a at design point

3) Compute : Stage Loading Coeff, $\Psi = \Delta H_{0T}/\gamma_2 \rho U^2$ Flow Coefficient, $\phi = C_a / U_{\text{mean}}$ Degree of Reaction, R_{x} Blade Flow Turning, Δβ Velocity Triangles, α_1 , α_2 , α_3 , β_2 , β_3 C_1, C_2, C_3, V_2, V_3

Selection of

1) Design requirements $\boldsymbol{\eta}_T$, $\boldsymbol{\tau}^*_{\mathsf{g}\text{-max}}$, $\boldsymbol{\alpha}^*_{\text{exit}}$, $\boldsymbol{\mathsf{M}}^*_{\mathsf{2}}$ 2) Design constraints : for both **HPT & LPT** – ** ηT*

> **i)** n_1 , n_2 , U_{m1} , D_{m1} , U_{m2} , D_{m2} *ii) Blade and Disk Stress levels iii) Materials Technology iv) Blade cooling Technology*

Airfoils for Gas Turbine

Important Aerodynamic Parameters for blade airfoil selection

Airfoil Geometry **Selection** L.E **Radius** α_1 or β_2 \leqslant 0.2 R_1 $= s \cdot \tan \alpha$ O $R_{t,0}$ $\frac{\text{S}}{\text{R}_{\text{te}}}$ 0.17 R_{2} $\frac{t_{\text{te}}}{s}$ 0.02 T.E Radius, t_{te} S blade pitch

7

Pitch or Spacing **Blade Setting or Stagger Angle Actual Incidence.** ac **Inlet Flow Vector** Inlet Blade Angle Induced Incidence **Blade Camber** Inlet (Upstream) flow angle ١θ Flow Deflection, ε c Blade Chord Tangents to the blade **Camber line Blade Camber** <u>`trailing edge</u> Tangents to far flow thickness, t directions **Opening (or Throat) Blade Outlet Angle Flow Deviation Blade Outlet Flow Angle**

Lect - 29

TURBOMACHINERY AERODYNAMICS

Airfoil pressure distribution applied as per requirement to deviate from a starting profile

Cascade airfoil pressure distributions.

Predicted and measured stator pressure distribution.

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Predicted and measured rotor pressure distribution.

11

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

AERODYNAMICS 86Y

Soderberg's correlation of turbine blade loss coefficient with fluid deflection

Blade loading vs Blade Spacing

If the spacing between the blades is small, the blades provide maximum guidance of the fluid , but the surface area goes up and the surface friction loss (primary loss) goes up.

Zweifel criterion specifies: $Z_w = \Delta H_{0T}/\Delta H_{0T\text{-ideal}} \approx 0.8$ Which in terms of blade tangential loads , $Z_w = 2.5/c \cdot cos^2\alpha_2$ (tan α_1 + tan α_2) The above criterion allows the designed to arrive at a minimum loss blade spacing. However modern design exploration has proven that the specification is valid for $60^{\circ} < \alpha_2 < 70^{\circ}$

HPT turbines and LPT Turbines

- HPT blades are short and run at high rpms
- LPT blades are long and run at low rpms
- HPT blades face high temperature
- LPT blades work with high velocity flows

Because of vastly different loading patterns the airfoils used for HPT and LPT are often quite different from each other

- Airfoils designs are generally done in cascade format
- A starting airfoil shape (T6 or T106) with appropriate starting camber matching the flow turning angle (Δα) is selected
- The airfoil is suitably modified by interactive or Direct method of numerical analysis
- At the final stage when a acceptable blade loading has been reached, Indirect method may be used by specifying a Cp distribution over the blade to arrive at a final airfoil shape in cascade

Next Class

Design of 3-D Turbine blade shapes