Lect 25

Prof. Bhaskar Roy, Prof. A M Pradeep **Department of Aerospace Engineering, IIT Bombay**

Axial Flow Turbines

3-D Flow theories

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect 25

• It is assumed that radial motion takes place in the blade passage only

• The stream surface has a cylindrical shape

 C_r << C_a ; C_r << C_w

•simplified radial equilibrium equation is valid

$$
\frac{1}{\rho}\frac{dp}{dr} = \frac{1}{r} . C_w^2
$$

Following Three 3-D flow models in axial turbines are often used for design and analysis

1) Free Vortex flow

2) Constant nozzle exit angle, α_2

3) Arbitrary vortex case, $C_w = r^n$

Lect 25

1) Free Vortex Flow model

 C_w . $r = constant$, applied on the rotor flow which normally entails a few assumptions :

At turbine rotor entry , $dH_{02}/dr = 0$; $C_{W2}.r = constant$; $C_{A2} = const$

Rotor specific work done : H_{02} – H_{03} = U $(C_{w2} + C_{w3}) = \omega(r_2.C_{w2} - r_3.C_{w3})$ = constant With $C_{w3}.r = constant$, it follows $C_{a3} = const$

Lect 25

Hence, for obtaining various parameters along blade length following may be adopted:

- 1) All thermodynamic properties are constant in the annulus
- 2) tan $\alpha_2 = (r_m/r)_2$ tan α_{2m}
- 3) tan $\beta_2 = (r_m/r)_2$ tan α_{2m} -(r/r_m)₂.U_m/C_{a2}
- 4) $C_{w3}.r = constant$, $C_{a3} = const = C_{a2}$
- 5) tan α_3 = $(r_m/r)_3$ tan α_{3m}
- 6) tan $\beta_3 = (r_m/r)_3$ tan $\alpha_{3m} + (r/r_m)_3$.U_m/C_{a3}

Constant Nozzle exit angle model

This model has been utilized for the practical purpose of creating stator-nozzle blades with zero twist. When stator-nozzles are facing very high inlet temperature elaborate cooling mechanism is embedded inside the blades; to facilitate efficient cooling of the blades, it is thought that such blades may not be twisted at all.

$$
\alpha_2 = \text{constant}
$$

$$
\cot\;g=\frac{C_{a2}}{C_{w2}}=const
$$

$$
C_{a2} = C_{w2}.\cot\; \zeta;\quad \text{which yields}\;\; \frac{dC_{a2}}{dr} = \frac{dC_{w2}}{dr}.\cot\; \zeta
$$

Now invoking the *radial equilibrium equation* in energy eqn

$$
\frac{dH}{dr} = C_a \frac{dC_a}{dr} + C_W \frac{dC_W}{dr} + \frac{C_W^2}{r} \quad \text{and,} \quad \frac{dH}{dr} = 0
$$

We get, $C_a \frac{dC_a}{dr} + C_W \frac{dC_W}{dr} + \frac{C_W^2}{r} = 0$

r dr sin^2 ਯੂ. dr dC 0 r C_{\cdot} dr $C_{\mu\not\rho}$ 1 + cot² ζ) $\cdot \frac{dC_{\mu}}{d}$ 0 r C dr C_{ν} . $\frac{dC_{\nu}}{dt}$ dr dC C_{α} .cot² φ . 2 $\frac{w^2}{2} = -sin^2$ 2 w^2 $\vee w^2$ 2 2 $\sum_{w} (1 + \cot^2 \zeta)$. $\frac{d\zeta_{w2}}{dr} + \frac{\zeta_{w2}}{dr} =$ 2 w^2 $\vee w^2$ w2 w2 2 2 C_{W2} . COt² ζ . $\frac{dV_{W2}}{dr} + C_{W2}$. $\frac{dV_{W2}}{dr} + \frac{V_{W2}}{dr} =$

which, on integration yields

Lect 25

2

$$
C_{w2}.r^{\sin^2 9} = const \text{ ; and then } C_{W2} = C_{W2} \left(\frac{r_m}{r}\right)^{\sin^2 9}
$$

, $C_{\scriptscriptstyle \mathcal{A}}$, $\varGamma^{\scriptscriptstyle SII}{}^{\scriptscriptstyle -}\,$ $^{\scriptscriptstyle 2}$ = const \sin^2 ਯ alternate I y*,* $\mathbf{\mathit{C}}_{a2}$ *.r^{sın- g} =*

and then
$$
C_{a2} = C_{a2m} \left(\frac{r_m}{r}\right)^{\sin^2} \frac{g}{2}
$$

and finally in terms of absolute velocity,

$$
C_2 = C_{2m} \left(\frac{r_m}{r}\right)^{\sin^2 2}
$$

Lect 25

So, at the rotor inlet station one can say,

$$
if \qquad \boxed{\alpha_2 \, = \, constant}
$$

then,

$$
\frac{C_{W2}}{C_{W2m}} = \frac{C_{a2}}{C_{a2m}} = \frac{C_2}{C_{2m}} = \frac{r}{r_m}
$$

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Now, There are three possibilities:

- a) Constant H_{03} at the rotor outlet
- b) Zero whirl velocity at the outlet, i.e. $\alpha_3 = 0$
- c) Free Vortex continued at the outlet

a) Constant Total Enthalpy at the outlet condition, if applied

U $(C_{W2} + C_{W3}) = \Delta H_0$

And, whirl component of the velocity at rotor outlet is found from :

$$
C_{w3} = \frac{\Delta H_0}{U} - C_{w2} = \frac{K}{r} - C_{a2} \tan \alpha_2
$$

where, $K = \frac{\Delta H_0}{\omega}$

And, subsequently C_{a3} may be also computed Both of which are computed from root to tip, using the variation shown in slide 10

b) Zero rotor exit whirl velocity $\alpha_3 = 0$ this means, $dH/dr = C_{a3}$. dC_{a3}/dr And ,

$$
H_{03} = H_{02} - U C_{w2} = H_{02} - U.C_{w2m}(r_m/r)^{sin^2\alpha}
$$

Which, produces the enthalpy distribution radially at exit :

$$
\frac{dH_{03}}{dr} = \frac{d}{dr} \left[U.C_{w2m} \cdot \left(\frac{r_m}{r} \right)^{\sin^2 \alpha_2} \right]
$$

c) Free Vortex continued at rotor exit

The exit axial velocity field may be expressed as :

$$
C_{a3}^2 = C_{a3m}^2 + 2U_m C_{w2m} \left[1 - \left(\frac{r}{r_m}\right)^{\cos^2\alpha} \right]
$$

3) Arbitrary vortex case, $C_w = r^n$

Depending on the value of n there are four flow variation possibilities

- i) $n = -1$ -- resolves to Free Vortex Model
- ii) n= 0 ----- resolves to constant free vortex
- iii) n= 1 ---- gives 'solid body rotation' model
- iv) n= -2 --- produces 'strong vortex flow'

All these flow models are considered for use in Turbine design and preliminary analysis

Next Class -----

Problem Solving on Turbine 3-D flow theories