Lect- 3

**Prof. Bhaskar Roy, Prof. A M Pradeep** Department of Aerospace Engineering, IIT Bombay

### In this lecture...

• Design parameters

TURBOMACHINERY AERODYNAMICS

• Two dimensional analysis: Cascade aerodynamics

## **Design parameters**

- The following design parameters are often used in the parametric study of axial compressors:
  - Flow coefficient,

$$\phi = C_a / U$$

- Stage loading,

$$\psi = \Delta h_0 / U^2 = \Delta C_w / U$$

- Degree of reaction,  $R_x$
- Diffusion factor, D\*

### Degree of reaction

- Diffusion takes place in both rotor and the stator.
- Static pressure rises in the rotor as well as the stator.
- Degree of reaction provides a measure of the extent to which the rotor contributes to the overall pressure rise in the stage.

Lect-3

### **Degree of reaction**

$$R_{x} = \frac{\text{Static enthalpy rise in the rotor}}{\text{Stagnation enthalpy rise in the stage}}$$
$$= \frac{h_{2} - h_{1}}{h_{03} - h_{01}} \approx \frac{h_{2} - h_{1}}{h_{02} - h_{01}}$$
For a nearly incompressible flow,

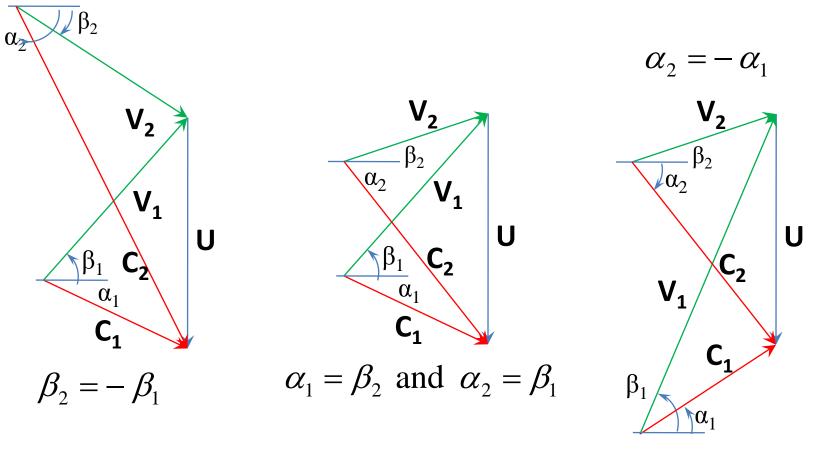
$$h_2 - h_1 \cong \frac{1}{\rho} (P_2 - P_1)$$
 for the rotor

and for the stage,  $h_{03} - h_{01} \cong \frac{1}{\rho} (P_{03} - P_{01})$ 

$$\therefore R_{x} = \frac{h_{2} - h_{1}}{h_{02} - h_{01}} \cong \frac{P_{2} - P_{1}}{P_{02} - P_{01}}$$

### **Degree of reaction**

From the steady flow energy equation,


$$\begin{aligned} h_{1} + \frac{V_{1}^{2}}{2} &= h_{2} + \frac{V_{2}^{2}}{2} \\ \therefore R_{x} = \frac{h_{2} - h_{1}}{h_{03} - h_{01}} = \frac{V_{1}^{2} - V_{2}^{2}}{2U(C_{w2} - C_{w1})} \\ \text{For constant axial velocity, } V_{1}^{2} - V_{2}^{2} = V_{w1}^{2} - V_{w2}^{2} \\ \text{And, } V_{w1} - V_{w2} = C_{w1} - C_{w2} \\ \text{On simplification, } R_{x} = \frac{1}{2} - \frac{C_{a}}{2U} (\tan \alpha_{1} - \tan \beta_{2}) \\ \text{or, } R_{x} = \frac{C_{a}}{2U} (\tan \beta_{1} + \tan \beta_{2}) \end{aligned}$$

## Degree of reaction

- Special cases of  $R_x$ 
  - $R_x = 0, \beta_2 = -\beta_1$ , There is no pressure rise in the rotor, the entire pressure rise is due to the stator, the rotor merely deflects the incoming flow: impulse blading
  - $R_x = 0.5$ , gives  $\alpha_1 = \beta_2$  and  $\alpha_2 = \beta_1$ , the velocity triangles are symmetric, equal pressure rise in the rotor and the stator
  - $R_x = 1.0, \alpha_2 = -\alpha_1$ , entire pressure rise takes place in the rotor while the stator has no contribution.

Lect-3

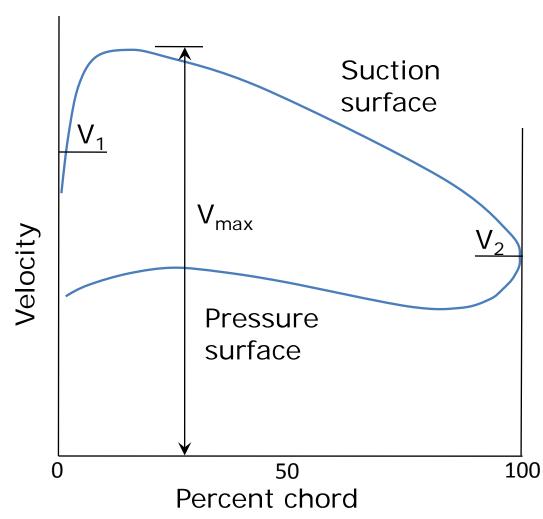
### **Degree of reaction**



 $R_x = 0.0$   $R_x = 0.5$   $R_x = 1.0$ 

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

### **Diffusion factor**


- Fluid deflection  $(\beta_2 \beta_1)$  is an important parameter that affects the stage pressure rise.
- Excessive deflection, which means high rate of diffusion, will lead to blade stall.
- Diffusion factor is a parameter that associates blade stall with deceleration on the suction surface of the airfoil section.
- Diffusion factor, D\*, is defined as

 $D^* = \frac{V_{max} - V_2}{V_1}$  Where,  $V_{max}$  is the ideal surface velocity at

the minimum pressure point and  $V_2$  is the ideal velocity at the trailing edge and  $V_1$  is the velocity at the leading edge.

Lect-3

#### **Diffusion factor**



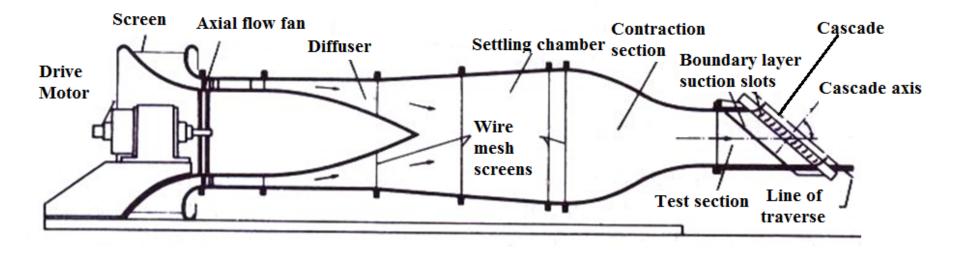
Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

### **Diffusion factor**

- Lieblein (1953) proposed an empirical parameter for diffusion factor.
  - It is expressed entirely in terms of known or measured quantities.
  - It depends strongly upon solidity (C/s).
  - It has been proven to be a dependable indicator of approach to separation for a variety of blade shapes.
  - $D^*$  is usually kept around 0.5.

$$D^{*} = 1 - \frac{V_{2}}{V_{1}} + \frac{V_{w1} - V_{w2}}{2\left(\frac{C}{s}\right)V_{1}}$$

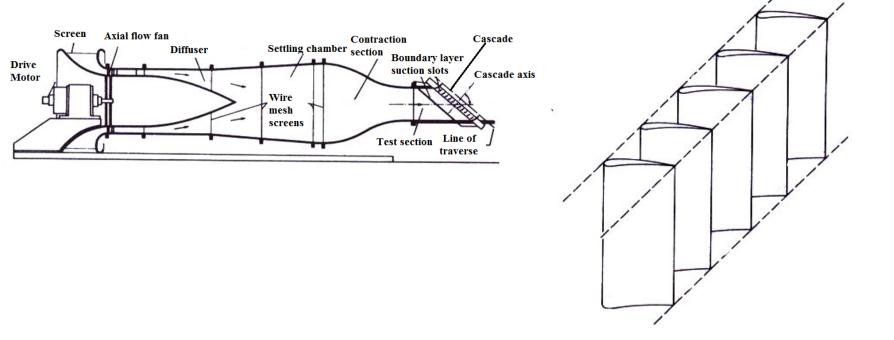
Where, C is the chord of the blade and s is the spacing between the blades.


### Cascade aerodynamics

- A cascade is a stationary array of blades.
- Cascade is constructed for measurement of performance similar to that used in axial compressors.
- Cascade usually has porous end-walls to remove boundary layer for a two-dimensional flow.
- Radial variations in the velocity field can therefore be excluded.
- Cascade analysis relates the fluid turning angles to blading geometry and measure losses in the stagnation pressure.

### Cascade aerodynamics

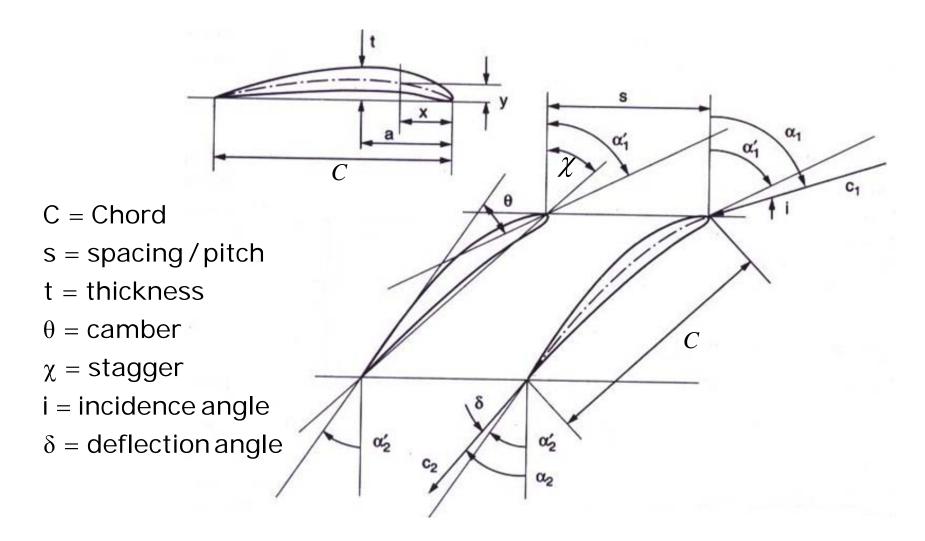
- The cascade is mounted on a turntable so that its angular direction relative to the inlet can be set at different incidence angles.
- Measurement usually consist of pressures, velocities and flow angles downstream of the cascade.
- Probe traverse at the trailing edge of the blades for measurement.
- Blade surface static pressure using static pressure taps: cp distribution.


### **Cascade wind tunnel**



Linear open circuit cascade wind tunnel

#### Lect-3


### **Cascade wind tunnel**



#### Linear open circuit cascade wind tunnel

Lect-3

### Cascade nomenclature



### Cascade aerodynamics

- The cascade is mounted on a turntable so that its angular direction relative to the inlet can be set at different incidence angles.
- Measurement usually consist of pressures, velocities and flow angles downstream of the cascade.
- Special nulling type probes (cylindrical, claw or cobra type) are used in the measurements.

### **Performance parameters**

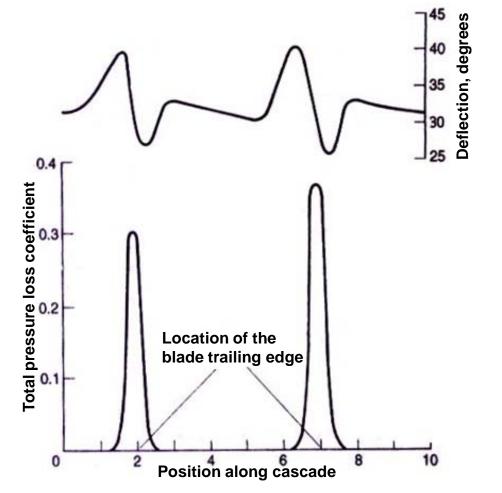
- Measurements from cascade: velocities, pressures, flow angles ...
- Loss in total pressure expressed as total pressure loss coefficient

$$\overline{W}_{PLC} = \frac{P_{01} - P_{02}}{\frac{1}{2}\rho V_1^2}$$

- Total pressure loss is very sensitive to changes in the incidence angle.
- At very high incidences, flow is likely to separate from the blade surfaces, eventually leading to stalling of the blade.

### **Performance parameters**

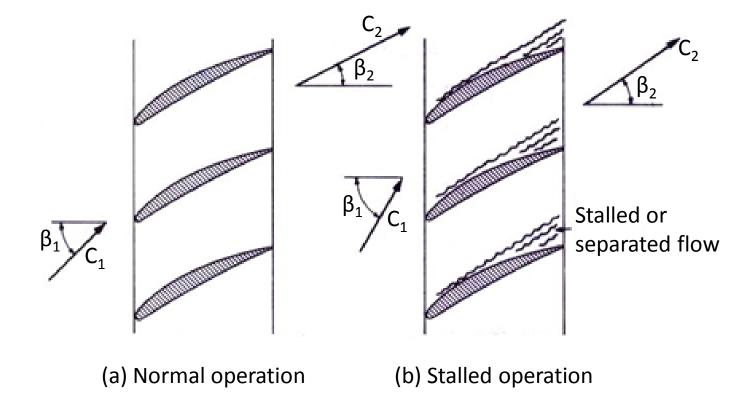
• Blade performance/loading can be assessed using static pressure coefficient:


$$C_{P} = \frac{P_{local} - P_{ref}}{\frac{1}{2}\rho V_{1}^{2}}$$

Where,  $P_{local}$  is the blade surface static pressure and  $P_{ref}$  is the reference static pressure (usually measured at the cascade inlet)

 The C<sub>P</sub> distribution (usually plotted as C<sub>P</sub> vs. x/C) gives an idea about the chordwise load distribution.

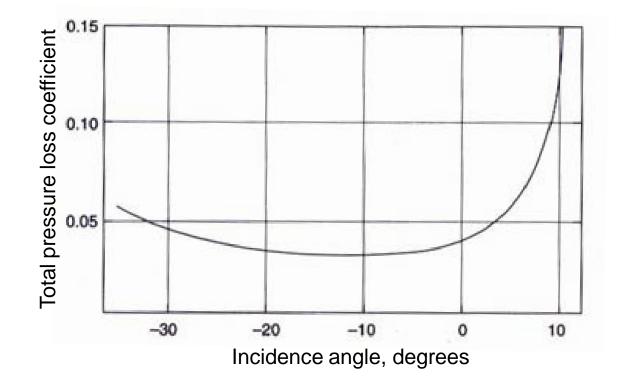
Lect-3


#### **Performance parameters**



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-3


### **Performance parameters**



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-3

#### **Performance parameters**



### In this lecture...

• Design parameters

TURBOMACHINERY AERODYNAMICS

• Two dimensional analysis: Cascade aerodynamics



### In the next lecture...

 2-D losses in axial compressor stage – primary losses