

Turbomachinery Aerodynamics

A Video course by

Bhaskar Roy

A M Pradeep

Aerospace Engineering Department I.I.T., Bombay

Course Outline

- Introduction to Turbomachineries:
- Axial flow compressors and Fans: Introduction; Aero-Thermodynamics of flow thru' axial flow compressor stage; Losses in axial flow compressor stage; Losses and Blade performance estimation; Secondary flows (3-D); Tip leakage flow and scrubbing; 3-D flow analysis; Radial Equilibrium Equation; Axial compressor characteristics; Design of compressor blades-2-D blade designs; Airfoil Data; Axial Flow Track Design; Multi-staging of compressor characteristics; Transonic Compressors; Shock Structure Models in Transonic Blades; Transonic Compressor Characteristics; 3-D Blade shapes of Rotors and Stators; Instability in Axial Compressors; Loss of Pressure Rise; Loss of Stability Margin; Noise problems in Axial Compressors and Fans

Course Outline

• Axial flow turbines : Turbine stage; Turbine Blade 2-D analysis; Work Done and Degree of Reaction; Losses and Efficiency; Flow Passage and flow track in multi-stage turbines; Subsonic, Transonic and Supersonic turbines; Multi-staging of Turbine; Exit flow conditions; Turbine blade cooling; Turbine Blade design — Turbine Profiles; Airfoil Data and Profile construction; 3-D blade design

Course Outline

- Centrifugal Compressors :Introduction; Elements of centrifugal compressor/ fan; Inlet Duct; Impeller flow; Effect of Slip factor; Concept of Rothalpy; Ideal and real work done; Incidence and lag angles; Diffuser; Centrifugal Compressor Characteristics; Surging and Rotating stall; Design variants of modern centrifugal compressors
- Radial Turbine: Introduction; Thermodynamics and Aerodynamics of radial turbines; Radial Turbine Characteristics; Losses and efficiency; Design of radial turbine
- Use of CFD for Turbomachinery analysis and design

Course Pre-requisites

A full course in **Aerodynamics**

It is necessary that students of this course are fully conversant with various fundamental aerodynamic theories, many which shall be used in the course of this lecture. Some knowledge of fundamentals of thermodynamics will be useful too.

Text/References

- Nicholas Cumpsty, Compressor Aerodynamics, 2004, Kreiger Publications, USA
- Johnson I.A., Bullock R.O. NASA-SP-36, Axial Flow Compressors, 2002 (re-release), NTIS
- NASA-SP-290, Axial Flow turbines, 2002 (rerelease), NTIS, USA.
- J H Horlock, *Axial flow compressors*, Butterworths, 1958, UK
- J H Horlock, Axial Flow Turbines, Butterworths, 1965, UK
- B Lakshminarayana; Fluid Mechanics and Heat Transfer in turbomachineries, 1995, USA

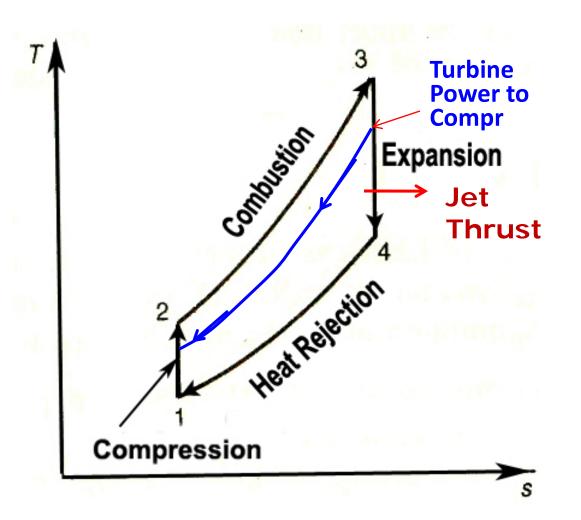
Suggested / Additional Readings

- 1) Oates Gordon C; Aerothermodynamics of Aircraft Engine Components; AIAA series, 1985
- 2) IGTI/ASME; The design of Gas Turbine Engines Thermodynamics and Aerodynamics (chapter 8 and 10), 2005, American Society of Mechanical Engineers (with video lectures)

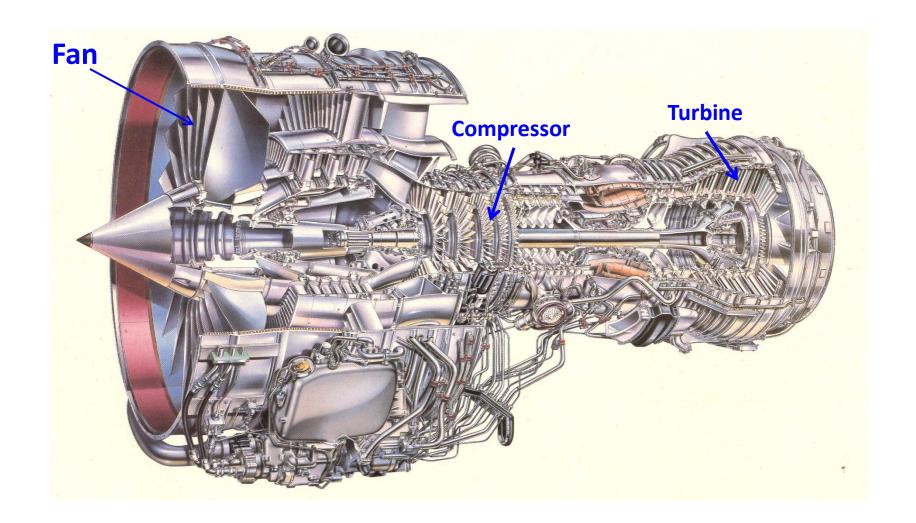
Lecture schedule

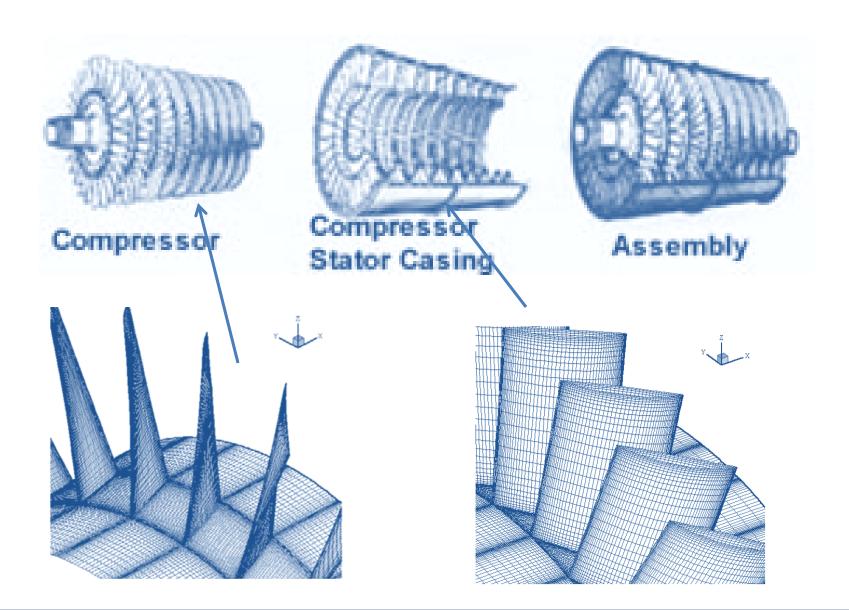
No.	Topic	Speak
		er
1	Introduction to Turbomachineries : Syllabus,	BR /
	References and schedules	AMP
2	Axial flow compressors and Fans : Introduction to	AMP
	compressor aerothermodynamics	
3	A two dimensional analytical model (Cascade)	AMP
4	2-D Losses in axial flow compressor stage -	AMP
	primary losses	
5	Tutorial-1- solved examples and tutorial problems	AMP
6	3-D flows in Blade passages, Secondary flows,	BR
	Tip leakage flow, Scrubbing	
7	Three dimensional flow analysis - Radial	BR
	Equilibrium concept	
8	Classical blade design laws- Free vortex and other	BR
	Laws	
9	Tutorial-2 - solved examples and tutorial	BR
	problems and Quiz 1	

10	Full Radial Equilibrium Equation and Streamline	BR
	curvature theory	
11	Axial compressor characteristics - Single	AMP
	stage, Multi-stage and Multi-spool	
	characteristics	
12	Instability in Axial Compressors : Types of	AMP
	distortions	
13	Inlet Distortion and Rotating Stall	AMP
14	Compressor Instability and control mechanisms	BR
15	Design of compressor blades- Airfoil Design -	BR
	subsonic, transonic, supersonic profiles	
16	· Transonic Compressors and Shock	BR
	Structure models, Transonic Compr.	
	Characteristics	
17	 Axial Flow Track Design; Inter-spool duct; 	BR
	3-D Blade shapes of Rotors and Stators	
18	Noise problem in Axial Compressors and Fans	BR

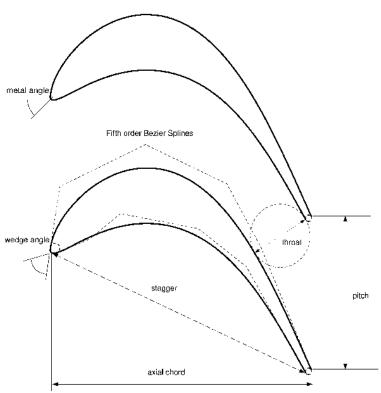

19	Axial flow turbines : Introduction to	BR
	turbine aerothermodynamics	
20	Axial flow turbines : Turbine Blade 2-D	AMP
	(cascade) analysis	
21	Axial flow turbines : Work Done, Degree	AMP
	of Reaction, Losses and Efficiency	
22	Axial flow turbines : Blade and Axial	AMP
	Flow Passages, Exit flow matching with	
	nozzle	
23	Tutorial -3 : Axial Flow Turbines	AMP
24	Multi-staging and Multi-spooling of	BR
	Turbine	
25	3-D flows in Turbine : 3-D flow theories	BR
23		DK
	- Free vortex theories etc.	
26	Tutorial – 4 : 3-D flows in Axial low	BR
	Turbines	

27	Turbine Blade Cooling – 1 – fundamental of heat transfer and blade cooling	AMP
28	Turbine Blade Cooling Technologies - 2	BR
29	Turbine Blade design – Turbine Profiles : Airfoil Data and Profile construction	BR
30	Turbine Blade design - 3-D blade shapes	BR
31	Centrifugal Compressors	AMP
32	Centrifugal Compressors	AMP
33	Tutorial - 5 : Centrifugal Compressors	AMP

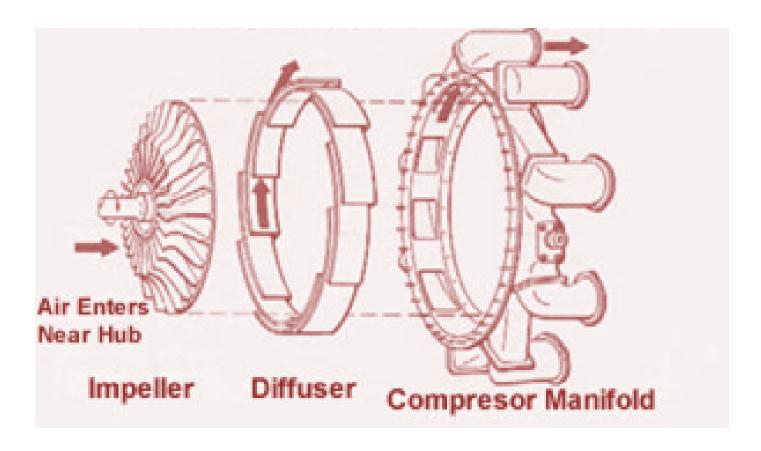

34	Design of Centrifugal Compressors : Design of impellers	BR
35	Design of subsonic and supersonic vaned diffusers, vaneless volutes	BR
36	Radial Turbine : Thermodynamics and Aerodynamics of radial turbines	AMP
37	Radial Turbine Characteristics	BR
38	Tutorial - 6 : Radial Turbines and Quiz-2	BR
39	Design of Radial Turbines	BR


40	CFD for Turbomachinery: Computer aided	BR
	blade profiles and cascade analysis	
41	Grid generation, Periodicity and Boundary	AMP
	Conditions and Flow Analysis	
42	3-D blade generation and analysis using	BR
	CFD	
43	Flow track and inter-spool duct analysis	AMP
	and design using CFD	

A Brief Introduction to Compressors and Turbines



- Heat Engines require compression before combustion for efficient combustion
- Compressed burnt gas facilitates turbine work production
- For jet engines Jet thrust creation requires compressed gas expansion through jet nozzle



Centrifugal Compressor Components

- Creation of Compressors and Turbines require substantial knowledge of aerodynamic behaviour of flow through these machines.
- Modern compressor and turbine design is substantially aided by Computational Fluid Dynamics (CFD)
- Final blade shaping requires sophisticated geometric modelling softwares.