Jet Aircraft Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

1111111

THE HEAD

Lecture 41

Lecture with Numerical Examples of Ramjet, Pulsejet and Scramjet

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Problem-1 Ramjet

A ramjet is flying at Mach 1.818 at an altitude 16.750 km altitude (Pa = 9.122 kPa, Ta = - 56.5° C = 216.5 K., sonic speed, a = 295 m/s). The flow is assumed to enter the intake of the ramjet through a normal shock standing at the intake face. No pre-entry loss or friction loss inside the engine is assumed to exist. Combustion delivery temperature is 1280 K. and the fuel -air ratio is 1:40. The area at the intake face is $A_1 = 0.0929 \text{ m}^2$ and at the Combustion chamber , $A_3 = 0.1858 \text{ m}^2$

Calculate :

- i) Mass flow rate through the engine
- ii) Throat area in the nozzle, A_5
- iii) Combustion related pressure drop in the combustion chamber
- iv) If the nozzle expands to ambient pressure find the thrust produced
- v) If the nozzle expands only in a convergent nozzle – find the thrust produced
- vi) Calculate the propulsive efficiencies for (iv) and (v)
- vii) Calculate TSFC in both the cases

viii) Complete and draw the cycles for the cases –(a) with C-D nozzle and (b) Convergent nozzle

Solution :

Flight velocity=Intake velocity of air=M₁.a=536 m/s From isentropic relations,

Total temperature at entry, $T_{0a} = 360 \text{ K}$ Total Pressure at entry, $P_{0a} = 53.85 \text{ kPa}$ Ambient air density, $\rho_1 = P_a/R.T_a = 0.147 \text{ kg/m}^3$ Mass flow through the Intake = $\rho_1.V_a.A_1 = 7.3 \text{ kg/s}$ Normal shock : From shock tables :

At intake face, for $M_1 = 1.82$, $M_2 = 0.612$, $T_2 = 334.8K$ $P_{02} = 0.803.P_{01} = 43.25$ kPa, $T_{02} = T_{01} = 360$ K Since the duct losses due to friction etc are zero, $P_{03} = P_{02} = 43.25$ kPa, $T_{03} = T_{02} = 360$ K

Using isentropic tables, at stn 2 behind the shock, $M_2 = 0.6121$, the area may be computed from $A_2/A_1 = 1.16565$;

Then , $A_{cc}/A_{I} = (A_{cc}/A_{2}) \cdot (A_{2}/A_{I}) = 2 \times 1.16565 = 2.33$

Inside the combustion chamber, the Mach number may be computed from isentropic tables or relations as : $M_3 = 0.26$

Combustion chamber calculations :

Due to accompanying heat addition, Rayleigh flow tables or relations need to be utilized for calculation of parametric variations.

Flow in the C-D nozzle may be assessed as : Starting from Mach 0.83 (CC delivery) assuming isentropic flow, $A_4/A_t = 1.027$ in the convergent duct The exit area may be calculated from $A_t = A_4 / (A_4 / A_t) = 0.1858 / 1.02696 = 0.181 \text{ m}^2$ As no duct loss is prescribed, $P_{0t} = P_{04}$, $P_t = 0.25 \times P_{04}$ At the exit, after flow through the divergent duct, $M_{e} = 1.55$; $A_{t}/A_{e} = 1.211$, $T_{e}/T_{0e} = 0.675$ $A_e = 1.211 \times 0.181 = 0.22 \text{ m}^2$, $P_e = P_a$ as prescribed From $T_{0t} = T_{0e} = T_{04}$, as no heat / work is transacted Since, $T_{0t} = T_{0e} = T_{04} = 1280$ K, then $T_{e} = 864.5$ K Jet Vel is now calculated $V_{\rho} = M_{\rho}\sqrt{\gamma} \cdot R \cdot T_{\rho} = 916.5 \text{ m/s}$ For fuel-air ratio of 1:40 thrust is calculated as :

Flow in the C-D nozzle may be assessed as : Starting from Mach 0.83 (CC delivery) assuming isentropic flow, $A_4/A_t = 1.027$ The exit area may be calculated from $A_t = A_4 / (A_4 / A_t) = 0.1858 / 1.02696 = 0.181 \text{ m}^2$ As no duct loss is prescribed, $P_{0t} = P_{04}$, $P_t = 0.25 \times P_{04}$ At the exit, $M_{e} = 1.55$; $A_{t}/A_{e} = 1.211$, $T_{e}/T_{0e} = 0.675$ $A_e = 1.211 \times 0.181 = 0.22 \text{ m}^2$ From $T_{0t} = T_{04}$, as no heat / work is transacted Since, $T_{0t} = T_{04} = 1280$ K, then $T_e = 864.5$ K Jet Vel is now calculated $V_{e} = M_{e}\sqrt{\gamma \cdot R \cdot T_{e}} = 916.5 \text{ m/s}$ For a fuel-air ratio of 1:40 the thrust may now be calculated as :

JET AIRCRAFT PROPULSION

Thrust is given by : $F = \dot{m}[(1+f)V_e - V_1] + A_{e}(P_e - P_a)$

<u>C-D nozzle</u> Thrust is, F = 4090 N

Propulsive Efficiency,

$$\eta_{p} = F.V_{a} / F.V_{a} + \frac{1}{2}.\dot{m}.[(1+f)V_{e}^{2} - V_{a}^{2}]$$

= 51.2 %

For fuel-air ratio prescribed as f = 1/40

Sp. Fuel Consn., TSFC = $f/(F/\dot{m})=0.16 \text{ kg/N-hr}$

If the nozzle is only a <u>convergent nozzle</u>: The exit face is the throat of the nozzle.

JET AIRCRAFT PROPULSION

convergent nozzle Pressure ratio necessary for choking : 1.893 Available pr. ratio across the nozzle = $P_{04}/P_a = 3.96$ The nozzle is choked, and exit pressure, $P_{\rho} = 19.1 \text{ kPa}$ $T_{e} = T_{t} = T_{04} / [(\gamma + 1)/2] = 1280 / 1.2 = 1067 \text{ K}$ Exit jet velocity, $V_{\rho} = V_{t} = \sqrt{\gamma \cdot R \cdot T_{\rho}} = 654 \text{ m/s}$ From isentropic tables, exit (throat) area, $A_4/A_t = 1.027$ Whence, exit area $A_e = 0.1809 \text{ m}^2$ Thrust F = $\dot{m}[(1+f)V_e - V_1] + A_e (P_e - P_a) = 3587 \text{ N}$ Sp. Fuel Consn., TSFC = $f/(F/\dot{m}) = 0.1834$ N Prop Efficiency $\eta_p = F.V_a/F.V_a + \frac{1}{2}.\dot{m}.[(1+f)V_e^2 - V_a^2] = 54.8\%$

Problem 2 – Pulsejet

An aircraft powered by a pulsejet engine is flying at 12 km altitude, at Mach 2. The engine parameters are given as : inlet area = 0.084 m^2 . Combustion chamber pressure development, P_{03}/P_{02} = 9.0, heating value of fuel, Q = 43,000 kJ/kg, combustion efficiency = 0.96. Assuming ideal (no loss) flow through the intake, find:

(i) The air mass flow rate,
(iii) fuel-air ratio, *f*(v) Thrust of the engine

(ii) Maximum Temp.
(iv) Exit velocity, V_e
(vi) TSFC

At 12 km P_{0a} = 18.75 kPa ; T_{0a} = 216.65 K The flight velocity is : $V_a = M_a \sqrt{\gamma} \cdot R \cdot T_a = 590 \text{ m/s}$ The air mass flow rate is : = ρ_a . V_a . $A_1 = 15$ kg/s Total temp across the intake diffuser remains constant, $T_{01} = T_{0a} = T_a [1 + (\gamma - 1)M^2/2] = 390 \text{ K} = T_{02}$ Total pressure, $P_{01} = P_{0a} = P_a (T_{01}/T_{0a})^{\gamma/(\gamma-1)} = 147 \text{ kPa}$ In the combustion chamber pressure rises from P_{02} to P_{03} by a prescribed ratio 9.0, and the temp ratio (temp change across the CC) is same by gas laws. The combustion delivery temp is : T_{03} =3510 K

The fuel air ratio may be calculated $f = \dot{m}_f / \dot{m}_a = (c_{p-gas} T_{03} - c_{p-air} T_{02}) / Q. \eta_{cc} = 0.0975$ In the jet pipe:

The exhaust velocity is
$$V_e = \sqrt{2.c_{p-gas}} \cdot T_{03} \cdot [1 - 1/9^{0.25}]$$

= 2297 m/s

Specific Thrust, $F/\dot{m}_a = (1+f)V_e - V_a = 1931.5 \text{ N-s/kg}$ The thrust. F = 28950 N = 28.95 kN

The TSFC = $f/(F/\dot{m}_a) = 50 \text{ mg/N-s} = 0.180 \text{ kg/N-hr}$

Propulsive Efficiency $\eta_p = F.V_a/F.V_a + \frac{1}{2}.\dot{m}.[(1+f)V_e^2 - V_a^2]$ = 0.418 = 41.8%

Problem 3 – Scramjet

A scramjet powered aircraft flys at Mach 5 at 16.75 km where Ta=216.67 K and Pa=9.122 kPa. The intake has a shock structure of two oblique shocks with both deflection angles $\delta = 10^{\circ}$. By burning hydrogen fuel (Q=120,900 kJ/kg), the temp is raised to 2000 K. The fuel air ratio =0.025. The nozzle expansion ratio is A₅/A₄ = 5.0. The inlet and the exit areas are A₁=A₅= 0.2 m². If c_p= 1.51 kJ/kg.K ; η_{cc} = 0.8 Calculate :

i) Mach number at combustion chamber inletii) Exhaust jet velocityiii) Overall efficiency

JET AIRCRAFT PROPULSION

Flight velocity is : $V_a = M_a \sqrt{\gamma . R. T_a} = 1475 \text{ m/s}$ Mass flow through the engine $\dot{m}_a = \rho_a . V_a . A_1 = 43.3 \text{ kg/s}$ Inlet total temp $T_{01} = T_{oa} = T_a [1 + (\gamma - 1)M^2/2] = 1300\text{K} = T_{02}$ From shock relations or tables, Across the first shock , for $M_1 = 5 \& \delta = 10^{\circ}$ Shock angle, $\beta = 19.4^{\circ}$. $M_2 = 4.0$ and $T_2/T_1 = 1.429$

Across the second shock, $M_1=4$ & $\delta=10^{\circ}$ Shock angle, $\beta=22.2^{\circ}$. $M_3=3.3$ and $T_3/T_2=1.33$

In the combustion chamber heat is added to air flow with supersonic speed

Using Rayleigh Flow relations (or tables) $M_4=1.26$, and $P_{04}/P_{01} = 1.033$, $T_{04}/T_{01} = 0.966$ Combustion chamber pressure ratio, $P_{04}/P_{03} = 0.228$ Fuel-air ratio, $f = \dot{m}_f / \dot{m}_a = (c_{p-gas} \cdot T_{03} - c_{p-air} \cdot T_{02}) / Q \cdot \eta_{cc}$ = 0.01093

Nozzle Flow

For $M_4 = 1.26$, $T_{04}/T_4 = 1.317$, critical area ratio = 1.05 Whence, $A_e/A_t = (A_e/A_4) \cdot (A_4/A_t) = 5 \times 1.05 = 5.25$

Nozzle Flow

Nozzle outlet Mach number , $M_e=3.23$, for which isentropic temp ratio $T_{05}/T_5=3.11$

$$T_{5} = \frac{T_{5}.T_{05}.T_{04}.T_{4}.T_{3}.T_{2}}{T_{05}.T_{04}.T_{4}.T_{3}.T_{2}.T_{1}}.T_{1} = 654.5 \text{ K}$$

The exhaust velocity , $V_e = M_5 \sqrt{\gamma \cdot R \cdot T_e} = 1560 \text{ m/s}$ Specific Thrust, $F/\dot{m}_a = (1+f)V_e \cdot V_a = 102 \text{ N-s/kg}$ TSFC = 107.15 mg/N-s = 0.385 kg/N-hr Thrust , F =43.3 x 102 = 4416 N Propulsive Efficiency $\eta_p = F \cdot V_a / F \cdot V_a + \frac{1}{2} \cdot \dot{m} \cdot [(1+f)V_e^2 \cdot V_a^2] = 0.527 \text{ or } 52.7\%$

Comparison of Rotor-less Jet Engines

	Μ	H km	V _e m/s	F (kN)	TSFC Kg/n- hr	η _{pr}	F/m _a N/Kg /s
Ramjet (C-D noz)	1.8	16.7	916	4.09	0.16	51.2	560
Pulsejet	2	12	2297	28.95	0.18	41.8	1931
Scramjet	5	16.7	1560	4.41	0.38	52.7	102

Lect 41

Next

Concluding Lecture

Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay