Introduction to Aerospace Propulsion

Prof. Bhaskar Roy, Prof. A M Pradeep Department of Aerospace Engineering, IIT Bombay

Lecture No- 39

LEXISSION

ROFING

In this lecture ...

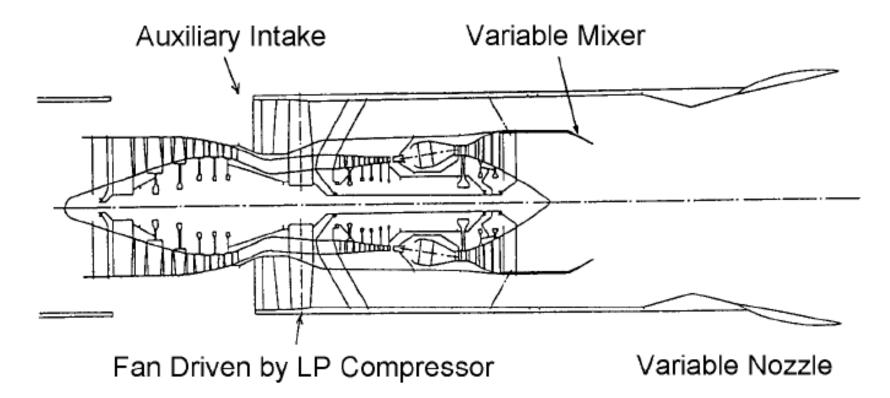
- Advanced propulsion concepts (Variable cycle engines)
- Supersonic transport propulsion
 - Mid-Tandem fan concept
 - Mixed flow turbofan ejector
- Short Take-off Vertical Landing engines
- Engine with intercooling, reheating and regeneration

Advanced propulsion concepts

- Supersonic transport (SST) can minimize travel time substantially.
- One of the most successful SST aircraft was Concorde.
- However its services were discontinued due to a variety of reasons: safety, economic viability, noise etc.
- No SST aircraft operational currently.

SST propulsion

- Revisit of SST aircraft technology
- Key challenges:
 - Better fuel economy
 - Increased safety
 - Lower noise
 - Lower emissions
- Conflicting design requirements
 - Supersonic cruise: high specific thrust
 - Subsonic cruise: high propulsive efficiency (low specific thrust), lower noise

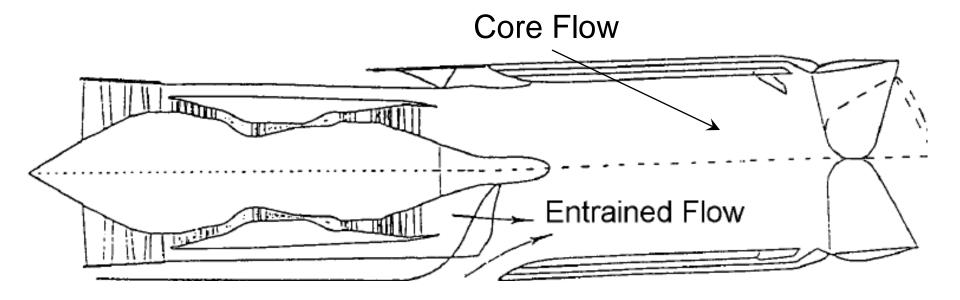

SST propulsion

- A "flow-multiplier" device, which during take-off and subsonic cruise can increase mass flow rate.
- This device can also adjust flow rates during supersonic cruise.
- This requires an engine that can operate with multiple/variable thermodynamic cycles.
- Two such concepts seem promising
 - Mid-tandem fan concept
 - Mixed flow turbofan with ejector

Mid-tandem fan concept

- Mid-tandem fan concept
 - This concept involves using variable components such as compressors with variable inlet guide vanes, auxiliary intakes, or variable geometry mixers and turbines.
 - All these can be scheduled to deliver higher or lower specific thrusts depending upon the requirement.
 - Key to success of this concept is innovative design of these complex components with good aerodynamic performance.

Mid-tandem fan concept



Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Mixed flow turbofan with ejector

- Mixed flow turbofan with ejector
 - Comprises of a long mixer-ejector nozzle
 - This nozzle entrains outside freestream air that is mixed with the core flow
 - This leads to a cooler, slower exhaust jet reducing noise substantially.
 - The ejector may be used only during subsonic, low altitude operation.
 - During supersonic cruise, the ejector can be switched off resulting is a high exhaust velocity and hence higher specific thrust.

Mixed flow turbofan with ejector

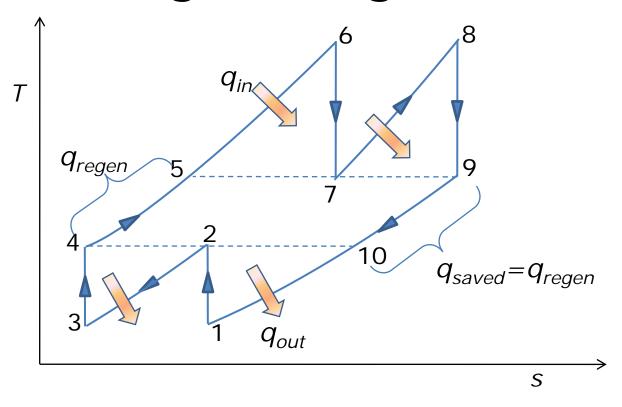
Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Short Take-off Vertical Landing

- Short Take-Off Vertical Landing (STOVL)
 - Another application where innovative engine cycles (variable cycles) are required.
 - Low bypass required at high flight speeds and high bypass at low flight speeds close to ground
 - Thrust is vectored downwards to support the weight of the aircraft when flight speed is not enough to get lift from wings
 - A part of the thrust is vectored down for short take off and all of it is vectored down for vertical landing

Short Take-off Vertical Landing

- For take off and landing jet velocity is low and so mass flow requirement is high, requiring a high bypass engine
- Achieved using a tandem fan configuration
- Two fans used in series or parallel configuration; series for low bypass requirements and parallel for high bypass requirements


Short Take-off Vertical Landing

- In series configuration the whole flow through the front fan passes through the second fan
- Functions like a common turbo fan engine with two fans
- For parallel configuration, the flow from the first fan is vectored downwards and the second fan takes in air through auxiliary intakes thus giving us a high bypass engine

INTRODUCTION TO AEROSPACE PROPULSION Lect-39 Other concepts for improved engine performance

- Engine performance can be improved by effecting other changes in the cycle
 - Intercooling
 - Reheating
 - Regeneration
- Reheating has been extensively used in both land based as well as aircraft engines.
- In aircraft engines, reheating is referred to as afterburning.

Brayton cycle with intercooling, reheating and regeneration

T-s diagram of an ideal gas-turbine cycle with intercooling, reheating, and regeneration

Lect-39

Other concepts for improved engine performance

- Intercooling
 - The work required to compress a gas between two specified pressures can be decreased by carrying out the compression process in stages and cooling the gas in between: multistage compression with intercooling.
 - Intercooling reduces the work required for compression.
 - This would in turn reduce the turbine work output.
 - Intercooling is not currently used in aircraft engines, but is a topic of research interest.

Lect-39

Other concepts for improved engine performance

- Reheating
 - Afterburning turbojet engines are commonly used in military aircraft.
 - Acceleration and supersonic cruise
 - In land based power plants, reheating is sometimes used between turbine stages.
- Regeneration
 - Energy storage can be carried out by using fuel as a coolant.
 - Preheating the fuel also improves the overall efficiency of the cycle.